Joseph P Balthasar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/641557/publications.pdf

Version: 2024-02-01

70 papers 3,421 citations

172457 29 h-index 57 g-index

70 all docs

70 docs citations

70 times ranked

2970 citing authors

#	Article	IF	CITATIONS
1	Dynamic Contrast-Enhanced Magnetic Resonance Imaging for the Prediction of Monoclonal Antibody Tumor Disposition. International Journal of Molecular Sciences, 2022, 23, 679.	4.1	О
2	Development and Evaluation of Competitive Inhibitors of Trastuzumab-HER2 Binding to Bypass the Binding-Site Barrier. Frontiers in Pharmacology, 2022, 13, 837744.	3.5	9
3	Targeted Delivery of Endosomal Escape Peptides to Enhance Immunotoxin Potency and Anti-cancer Efficacy. AAPS Journal, 2022, 24, 47.	4.4	2
4	Transient Competitive Inhibition Bypasses the Binding Site Barrier to Improve Tumor Penetration of Trastuzumab and Enhance T-DM1 Efficacy. Cancer Research, 2021, 81, 4145-4154.	0.9	26
5	Strategies to enhance monoclonal antibody uptake and distribution in solid tumors. Cancer Biology and Medicine, 2021, 18, 649-664.	3.0	16
6	The impact of sialylation linkageâ€type on the pharmacokinetics of recombinant butyrylcholinesterases. Biotechnology and Bioengineering, 2020, 117, 157-166.	3.3	5
7	Application of Physiologically Based Pharmacokinetic Modeling to Predict the Effects of FcRn Inhibitors in Mice, Rats, and Monkeys. Journal of Pharmaceutical Sciences, 2019, 108, 701-713.	3.3	18
8	Antibody Dependent Enhancement of <i> Acinetobacter baumannii </i> Infection in a Mouse Pneumonia Model. Journal of Pharmacology and Experimental Therapeutics, 2019, 368, 475-489.	2.5	15
9	Understanding Inter-Individual Variability in Monoclonal Antibody Disposition. Antibodies, 2019, 8, 56.	2.5	46
10	Development and Evaluation of a Physiologically Based Pharmacokinetic Model for Predicting the Effects of Anti-FcRn Therapy on the Disposition of Endogenous IgG in Humans. Journal of Pharmaceutical Sciences, 2019, 108, 714-724.	3.3	12
11	Physiologically Based Modeling of the Pharmacokinetics of "Catch-and-Release― Anti-Carcinoembryonic Antigen Monoclonal Antibodies in Colorectal Cancer Xenograft Mouse Models. Journal of Pharmaceutical Sciences, 2019, 108, 674-691.	3.3	6
12	Physiologically-based modeling of monoclonal antibody pharmacokinetics in drug discovery and development. Drug Metabolism and Pharmacokinetics, 2019, 34, 3-13.	2.2	51
13	High-Throughput, Sensitive LC-MS Quantification of Biotherapeutics and Biomarkers Using Antibody-Free, Peptide-Level, Multiple-Mechanism Enrichment via Strategic Regulation of pH and Ionic and Solvent Strengths. Analytical Chemistry, 2019, 91, 3475-3483.	6.5	7
14	Sensitive, High-Throughput, and Robust Trapping-Micro-LC-MS Strategy for the Quantification of Biomarkers and Antibody Biotherapeutics. Analytical Chemistry, 2018, 90, 1870-1880.	6.5	29
15	FcRn Expression in Wildtype Mice, Transgenic Mice, and in Human Tissues. Biomolecules, 2018, 8, 115.	4.0	23
16	"Catch-and-Release―Anti-Carcinoembryonic Antigen Monoclonal Antibody Leads to Greater Plasma and Tumor Exposure in a Mouse Model of Colorectal Cancer. Journal of Pharmacology and Experimental Therapeutics, 2018, 366, 205-219.	2.5	12
17	Pharmacokinetic and Pharmacodynamic Considerations for the Use of Monoclonal Antibodies in the Treatment of Bacterial Infections. Antibodies, 2018, 7, 5.	2.5	42
18	Qualitative and quantitative characterization of protein biotherapeutics with liquid chromatography mass spectrometry. Mass Spectrometry Reviews, 2017, 36, 734-754.	5.4	56

#	Article	IF	Citations
19	Physiologically-based modeling to predict the clinical behavior of monoclonal antibodies directed against lymphocyte antigens. MAbs, 2017, 9, 297-306.	5.2	11
20	The Capsular Polysaccharide of Acinetobacter baumannii Is an Obstacle for Therapeutic Passive Immunization Strategies. Infection and Immunity, 2017, 85, .	2.2	47
21	Investigation of the Influence of Protein-Losing Enteropathy on Monoclonal Antibody Pharmacokinetics in Mice. AAPS Journal, 2017, 19, 1791-1803.	4.4	4
22	Physiologically-based pharmacokinetic modeling to predict the clinical pharmacokinetics of monoclonal antibodies. Journal of Pharmacokinetics and Pharmacodynamics, 2016, 43, 427-446.	1.8	62
23	Sorafenib Decreases Tumor Exposure to an Anti-carcinoembryonic Antigen Monoclonal Antibody in a Mouse Model of Colorectal Cancer. AAPS Journal, 2016, 18, 923-932.	4.4	12
24	Development and validation of an enzyme-linked immunosorbent assay for the quantification of gelonin in mouse plasma. Journal of Immunoassay and Immunochemistry, 2016, 37, 611-622.	1.1	3
25	Application of a catenary PBPK model to predict the disposition of "catch and release―anti-PCSK9 antibodies. International Journal of Pharmaceutics, 2016, 505, 69-78.	5.2	14
26	Assessments of antibody biodistribution. Journal of Clinical Pharmacology, 2015, 55, S29-38.	2.0	32
27	Scale-up of a physiologically-based pharmacokinetic model to predict the disposition of monoclonal antibodies in monkeys. Journal of Pharmacokinetics and Pharmacodynamics, 2015, 42, 527-540.	1.8	29
28	Predicting the effects of 8C2, a monoclonal anti-topotecan antibody, on plasma and tissue disposition of topotecan. Journal of Pharmacokinetics and Pharmacodynamics, 2014, 41, 55-69.	1.8	8
29	Investigation of the Influence of Nephropathy on Monoclonal Antibody Disposition: A Pharmacokinetic Study in a Mouse Model of Diabetic Nephropathy. Pharmaceutical Research, 2014, 31, 1185-1193.	3 . 5	11
30	Effects of Calibration Approaches on the Accuracy for LC–MS Targeted Quantification of Therapeutic Protein. Analytical Chemistry, 2014, 86, 3575-3584.	6.5	56
31	Evaluation of Near Infrared Fluorescent Labeling of Monoclonal Antibodies as a Tool for Tissue Distribution . Drug Metabolism and Disposition, 2014, 42, 1906-1913.	3. 3	41
32	Combination of antibody targeting and PTD-mediated intracellular toxin delivery for colorectal cancer therapy. Journal of Controlled Release, 2014, 194, 197-210.	9.9	49
33	PK/TD modeling for prediction of the effects of 8C2, an anti-topotecan mAb, on topotecan-induced toxicity in mice. International Journal of Pharmaceutics, 2014, 465, 228-238.	5.2	23
34	Mechanistic considerations for the use of monoclonal antibodies for cancer therapy. Cancer Biology and Medicine, 2014, 11, 20-33.	3.0	109
35	Second-generation minimal physiologically-based pharmacokinetic model for monoclonal antibodies. Journal of Pharmacokinetics and Pharmacodynamics, 2013, 40, 597-607.	1.8	123
36	Application of knockout mouse models to investigate the influence of Fcl^3R on the pharmacokinetics and anti-platelet effects of MWReg30, a monoclonal anti-GPIIb antibody. International Journal of Pharmaceutics, 2013, 444, 185-192.	5.2	13

#	Article	IF	CITATIONS
37	Investigation of the Role of $Fc\hat{l}^3R$ and $FcRn$ in mAb Distribution to the Brain. Molecular Pharmaceutics, 2013, 10, 1505-1513.	4.6	54
38	Pharmacokinetic mAb–mAb Interaction: Anti-VEGF mAb Decreases the Distribution of Anti-CEA mAb into Colorectal Tumor Xenografts. AAPS Journal, 2012, 14, 445-455.	4.4	26
39	Application of PBPK modeling to predict monoclonal antibody disposition in plasma and tissues in mouse models of human colorectal cancer. Journal of Pharmacokinetics and Pharmacodynamics, 2012, 39, 683-710.	1.8	43
40	Application of knockout mouse models to investigate the influence of Fcl^3R on the tissue distribution and elimination of 8C2, a murine lgG1 monoclonal antibody. International Journal of Pharmaceutics, 2012, 439, 8-16.	5.2	29
41	High-Throughput Method Development for Sensitive, Accurate, and Reproducible Quantification of Therapeutic Monoclonal Antibodies in Tissues Using Orthogonal Array Optimization and Nano Liquid Chromatography/Selected Reaction Monitoring Mass Spectrometry. Analytical Chemistry, 2012, 84, 4373-4382.	6.5	66
42	Nano-scale liquid chromatography/mass spectrometry and on-the-fly orthogonal array optimization for quantification of therapeutic monoclonal antibodies and the application in preclinical analysis. Journal of Chromatography A, 2012, 1251, 63-73.	3.7	45
43	Evaluation of a Catenary PBPK Model for Predicting the In Vivo Disposition of mAbs Engineered for High-Affinity Binding to FcRn. AAPS Journal, 2012, 14, 850-859.	4.4	91
44	Physiologically based pharmacokinetic model for topotecan in mice. Journal of Pharmacokinetics and Pharmacodynamics, 2011, 38, 121-142.	1.8	14
45	Evaluation of combined bevacizumab and intraperitoneal carboplatin or paclitaxel therapy in a mouse model of ovarian cancer. Cancer Chemotherapy and Pharmacology, 2011, 68, 951-958.	2.3	27
46	Physiologically based pharmacokinetic model for T84.66: A monoclonal anti-CEA antibody. Journal of Pharmaceutical Sciences, 2010, 99, 1582-1600.	3.3	94
47	Target mediated disposition of T84.66, a monoclonal anti-CEA antibody. MAbs, 2010, 2, 67-72.	5.2	16
48	Use of an Anti-Vascular Endothelial Growth Factor Antibody in a Pharmacokinetic Strategy to Increase the Efficacy of Intraperitoneal Chemotherapy. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 580-591.	2.5	38
49	Development and Validation of an Enzyme Linked Immunosorbent Assay for the Quantification of Carcinoembryonic Antigen in Mouse Plasma. Journal of Immunoassay and Immunochemistry, 2009, 30, 418-427.	1.1	19
50	Investigation of the Influence of FcRn on the Distribution of IgG to the Brain. AAPS Journal, 2009, 11, 553-7.	4.4	88
51	AN ELISA FOR QUANTIFICATION OF T84.66, A MONOCLONAL ANTI-CEA ANTIBODY, IN MOUSE PLASMA. Journal of Immunoassay and Immunochemistry, 2009, 31, 1-9.	1.1	7
52	Pharmacokinetic/Pharmacodynamic Modeling of IVIG Effects in a Murine Model of Immune Thrombocytopenia. Journal of Pharmaceutical Sciences, 2007, 96, 1625-1637.	3.3	22
53	Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. Journal of Pharmacokinetics and Pharmacodynamics, 2007, 34, 687-709.	1.8	295
54	Mathematical modeling of topotecan pharmacokinetics and toxicodynamics in mice. Journal of Pharmacokinetics and Pharmacodynamics, 2007, 34, 829-847.	1.8	14

#	Article	IF	CITATIONS
55	High-performance liquid chromatographic assay for the determination of total and free topotecan in the presence and absence of anti-topotecan antibodies in mouse plasma. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2005, 816, 183-192.	2.3	20
56	Pharmacokinetic and pharmacodynamic effects of high-dose monoclonal antibody therapy in a rat model of immune thrombocytopenia. AAPS Journal, 2005, 7, E895-E902.	4.4	7
57	Pharmacokinetic Effects of 4C9, An Anti-FcRn Antibody, in Rats: Implications for the Use of FcRn Inhibitors for the Treatment of Humoral Autoimmune and Alloimmune Conditions. Journal of Pharmaceutical Sciences, 2005, 94, 718-729.	3.3	51
58	Application of Anti-Methotrexate Fab Fragments for the Optimization of Intraperitoneal Methotrexate Therapy in a Murine Model of Peritoneal Cancer. Journal of Pharmaceutical Sciences, 2005, 94, 1957-1964.	3. 3	7
59	Development and Validation of Enzymeâ€Linked Immunosorbent Assays for Quantification of Antiâ€Methotrexate IgG and Fab in Mouse and Rat Plasma. Journal of Immunoassay and Immunochemistry, 2004, 25, 335-344.	1.1	6
60	Antibody Pharmacokinetics and Pharmacodynamics. Journal of Pharmaceutical Sciences, 2004, 93, 2645-2668.	3. 3	804
61	Pharmacokinetic/Pharmacodynamic Modeling of the Effects of Intravenous Immunoglobulin on the Disposition of Antiplatelet Antibodies in a Rat Model of Immune Thrombocytopenia. Journal of Pharmaceutical Sciences, 2003, 92, 1206-1215.	3.3	64
62	Application of Pharmacokinetic–Pharmacodynamic Modeling to Predict the Kinetic and Dynamic Effects of Anti-Methotrexate Antibodies in Mice. Journal of Pharmaceutical Sciences, 2003, 92, 1665-1676.	3.3	26
63	Effects of intravenous immunoglobulin on platelet count and antiplatelet antibody disposition in a rat model of immune thrombocytopenia. Blood, 2002, 100, 2087-2093.	1.4	121
64	Intravenous Immunoglobulin Mediates an Increase in Anti-Platelet Antibody Clearance via the FcRn Receptor. Thrombosis and Haemostasis, 2002, 88, 898-899.	3.4	143
65	Effects of intravenous immunoglobulin on platelet count and antiplatelet antibody disposition in a rat model of immune thrombocytopenia. Blood, 2002, 100, 2087-93.	1.4	43
66	Intravenous immunoglobulin mediates an increase in anti-platelet antibody clearance via the FcRn receptor. Thrombosis and Haemostasis, 2002, 88, 898-9.	3.4	53
67	Application of pharmacodynamic modeling for designing time-variant dosing regimens to overcome nitroglycerin tolerance in experimental heart failure. Pharmaceutical Research, 1997, 14, 1140-1145.	3.5	22
68	Inverse Targeting of Peritoneal Tumors: Selective Alteration of the Disposition of Methotrexate Through the Use of Anti-Methotrexate Antibodies and Antibody Fragments. Journal of Pharmaceutical Sciences, 1996, 85, 1035-1043.	3.3	24
69	Highâ€Affinity Rabbit Antibodies Directed Against Methotrexate: Production, Purification, Characterization, and Pharmacokinetics in the Rat. Journal of Pharmaceutical Sciences, 1995, 84, 2-6.	3 . 3	16
70	Development and Characterization of High-Affinity Anti-Topotecan IgG and Fab Fragments., 0,, 835-850.		4