List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6415294/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The neuropathogenic contributions of lysosomal dysfunction. Journal of Neurochemistry, 2002, 83, 481-489.	3.9	181
2	Arg-Gly-Asp-Ser-Selective Adhesion and the Stabilization of Long-Term Potentiation: Pharmacological Studies and the Characterization of a Candidate Matrix Receptor. Journal of Neuroscience, 1997, 17, 1320-1329.	3.6	165
3	The pathogenic activation of calpain: a marker and mediator of cellular toxicity and disease states. International Journal of Experimental Pathology, 2000, 81, 323-339.	1.3	148
4	Lysosomal Activation Is a Compensatory Response Against Protein Accumulation and Associated Synaptopathogenesis—An Approach for Slowing Alzheimer Disease?. Journal of Neuropathology and Experimental Neurology, 2003, 62, 451-463.	1.7	140
5	Poor cognitive ageing: Vulnerabilities, mechanisms and the impact of nutritional interventions. Ageing Research Reviews, 2018, 42, 40-55.	10.9	136
6	Dual Modulation of Endocannabinoid Transport and Fatty Acid Amide Hydrolase Protects against Excitotoxicity. Journal of Neuroscience, 2005, 25, 7813-7820.	3.6	109
7	The pathogenic activation of calpain: a marker and mediator of cellular toxicity and disease states. International Journal of Experimental Pathology, 2004, 81, 323-339.	1.3	98
8	Endo-lysosomal dysfunction: a converging mechanism in neurodegenerative diseases. Current Opinion in Neurobiology, 2018, 48, 52-58.	4.2	97
9	Stable maintenance of glutamate receptors and other synaptic components in long-term hippocampal slices. Hippocampus, 1995, 5, 425-439.	1.9	86
10	Neural Cell Adhesion Molecule-associated Polysialic Acid Potentiates α-Amino-3-hydroxy-5-methylisoxazole-4-propionic Acid Receptor Currents. Journal of Biological Chemistry, 2004, 279, 47975-47984.	3.4	86
11	Oxidative Stress and Lysosomes: CNS-Related Consequences and Implications for Lysosomal Enhancement Strategies and Induction of Autophagy. Antioxidants and Redox Signaling, 2006, 8, 185-196.	5.4	86
12	Endocannabinoid Enhancement Protects against Kainic Acid-Induced Seizures and Associated Brain Damage. Journal of Pharmacology and Experimental Therapeutics, 2007, 322, 1059-1066.	2.5	83
13	Amyloid ? protein is internalized selectively by hippocampal field CA1 and causes neurons to accumulate amyloidogenic carboxyterminal fragments of the amyloid precursor protein. , 1998, 397, 139-147.		81
14	Enhancement of endocannabinoid signaling by fatty acid amide hydrolase inhibition: A neuroprotective therapeutic modality. Life Sciences, 2010, 86, 615-623.	4.3	80
15	Quantitative Method for the Profiling of the Endocannabinoid Metabolome by LC-Atmospheric Pressure Chemical Ionization-MS. Analytical Chemistry, 2007, 79, 5582-5593.	6.5	79
16	Protective Effects of Positive Lysosomal Modulation in Alzheimer's Disease Transgenic Mouse Models. PLoS ONE, 2011, 6, e20501.	2.5	77
17	Induction of β-Amyloid-Containing Polypeptides in Hippocampus: Evidence for a Concomitant Loss of Synaptic Proteins and Interactions with an Excitotoxin. Experimental Neurology, 1994, 129, 81-94.	4.1	68
18	Survival Signaling and Selective Neuroprotection Through Glutamatergic Transmission. Experimental Neurology, 2002, 174, 37-47.	4.1	65

#	Article	IF	CITATIONS
19	Intracellular Deposition, Microtubule Destabilization, and Transport Failure: An "Early―Pathogenic Cascade Leading to Synaptic Decline. Journal of Neuropathology and Experimental Neurology, 2002, 61, 640-650.	1.7	59
20	Glutamate-induced and NMDA receptor-mediated neurodegeneration entails P2Y1 receptor activation. Cell Death and Disease, 2018, 9, 297.	6.3	58
21	Microtubule-stabilizing agent prevents protein accumulation-induced loss of synaptic markers. European Journal of Pharmacology, 2007, 562, 20-27.	3.5	56
22	Potential Compensatory Responses Through Autophagic/Lysosomal Pathways in Neurodegenerative Diseases. Autophagy, 2006, 2, 234-237.	9.1	53
23	Blocking cannabinoid activation of FAK and ERK1/2 compromises synaptic integrity in hippocampus. European Journal of Pharmacology, 2005, 508, 47-56.	3.5	49
24	Equipotent Inhibition of Fatty Acid Amide Hydrolase and Monoacylglycerol Lipase – Dual Targets of the Endocannabinoid System to Protect against Seizure Pathology. Neurotherapeutics, 2012, 9, 801-813.	4.4	49
25	Targeting the endocannabinoid system in treating brain disorders. Expert Opinion on Investigational Drugs, 2006, 15, 351-365.	4.1	46
26	Calpain activation is involved in early caspaseâ€independent neurodegeneration in the hippocampus following status epilepticus. Journal of Neurochemistry, 2008, 105, 666-676.	3.9	46
27	A New Generation Fatty Acid Amide Hydrolase Inhibitor Protects Against Kainate-Induced Excitotoxicity. Journal of Molecular Neuroscience, 2011, 43, 493-502.	2.3	45
28	Translational suppression of a glutamate receptor subunit impairs long-term potentiation. Synapse, 1992, 12, 333-337.	1.2	44
29	Cellular Responses to Protein Accumulation Involve Autophagy and Lysosomal Enzyme Activation. Rejuvenation Research, 2005, 8, 227-237.	1.8	44
30	Activation of NMDA receptors stimulates extracellular proteolysis of cell adhesion molecules in hippocampus. Brain Research, 1998, 811, 152-155.	2.2	43
31	Positive Lysosomal Modulation As a Unique Strategy to Treat Age-Related Protein Accumulation Diseases. Rejuvenation Research, 2012, 15, 189-197.	1.8	43
32	Z-Phe-Ala-diazomethylketone (PADK) Disrupts and Remodels Early Oligomer States of the Alzheimer Disease Al²42 Protein. Journal of Biological Chemistry, 2012, 287, 6084-6088.	3.4	34
33	3-Nitropropionic acid toxicity in hippocampus: Protection throughN-methyl-D-aspartate receptor antagonism. Hippocampus, 2006, 16, 834-842.	1.9	33
34	The Role of Lysosomes in a Broad Disease-Modifying Approach Evaluated across Transgenic Mouse Models of Alzheimer's Disease and Parkinson's Disease and Models of Mild Cognitive Impairment. International Journal of Molecular Sciences, 2019, 20, 4432.	4.1	31
35	Peptidyl ?-keto amide inhibitor of calpain blocks excitotoxic damage without affecting signal transduction events. Journal of Neuroscience Research, 2002, 67, 787-794.	2.9	29
36	Integrin-type signaling has a distinct influence on NMDA-induced cytoskeletal disassembly. , 2000, 59, 827-832.		27

#	Article	IF	CITATIONS
37	Delayed and isoform-specific effect of NMDA exposure on neural cell adhesion molecules in hippocampus. Neuroscience Research, 2001, 39, 167-173.	1.9	23
38	Age-Related Phosphorylation and Fragmentation Events Influence the Distribution Profiles of Distinct Tau Isoforms in Mouse Brain. Journal of Neuropathology and Experimental Neurology, 1998, 57, 111-121.	1.7	21
39	Repeated contact with subtoxic soman leads to synaptic vulnerability in hippocampus. Journal of Neuroscience Research, 2004, 77, 739-746.	2.9	18
40	Submicromolar Aβ42 reduces hippocampal glutamate receptors and presynaptic markers in an aggregation-dependent manner. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1664-1674.	3.8	18
41	Blast waves from detonated military explosive reduce CluR1 and synaptophysin levels in hippocampal slice cultures. Experimental Neurology, 2016, 286, 107-115.	4.1	18
42	Aβ42-mediated proteasome inhibition and associated tau pathology in hippocampus are governed by a lysosomal response involving cathepsin B: Evidence for protective crosstalk between protein clearance pathways. PLoS ONE, 2017, 12, e0182895.	2.5	18
43	Abnormal response of distal Schwann cells to denervation in a mouse model of motor neuron disease. Experimental Neurology, 2016, 278, 116-126.	4.1	17
44	Positive Modulation of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid-Type Glutamate Receptors Elicits Neuroprotection after Trimethyltin Exposure in Hippocampus. Toxicology and Applied Pharmacology, 2002, 185, 111-118.	2.8	16
45	Age-related changes in neural cell adhesion molecule (NCAM) isoforms in the mouse telencephalon. Brain Research, 1993, 628, 286-292.	2.2	15
46	Biphasic NF-?B activation in the excitotoxic hippocampus. Acta Neuropathologica, 2004, 108, 173-82.	7.7	15
47	Lysosomal Modulatory Drugs for a Broad Strategy Against Protein Accumulation Disorders. Current Alzheimer Research, 2009, 6, 438-445.	1.4	14
48	Endosomal-lysosomal dysfunction in metabolic diseases and Alzheimer's disease. International Review of Neurobiology, 2020, 154, 303-324.	2.0	14
49	Early Synaptic Alterations and Selective Adhesion Signaling in Hippocampal Dendritic Zones Following Organophosphate Exposure. Scientific Reports, 2019, 9, 6532.	3.3	13
50	Discovery of small molecules that normalize the transcriptome and enhance cysteine cathepsin activity in progranulin-deficient microglia. Scientific Reports, 2020, 10, 13688.	3.3	13
51	Nonpeptidic Lysosomal Modulators Derived from Z-Phe-Ala-Diazomethylketone for Treating Protein Accumulation Diseases. ACS Medicinal Chemistry Letters, 2012, 3, 920-924.	2.8	12
52	Engulfment and cell motility protein 1 potentiates diabetic cardiomyopathy via Rac-dependent and Rac-independent ROS production. JCI Insight, 2019, 4, .	5.0	11
53	Gephyrin Alterations Due to Protein Accumulation Stress are Reduced by the Lysosomal Modulator Z-Phe-Ala-Diazomethylketone. Journal of Molecular Neuroscience, 2008, 34, 131-139.	2.3	10
54	Inhibitor of Endocannabinoid Deactivation Protects Against In Vitro and In Vivo Neurotoxic Effects of Paraoxon. Journal of Molecular Neuroscience, 2017, 63, 115-122.	2.3	9

#	Article	IF	CITATIONS
55	Piperidine and piperazine inhibitors of fatty acid amide hydrolase targeting excitotoxic pathology. Bioorganic and Medicinal Chemistry, 2019, 27, 115096.	3.0	9
56	Excitotoxic stimulation activates distinct pathogenic and protective expression signatures in the hippocampus. Journal of Cellular and Molecular Medicine, 2021, 25, 9011-9027.	3.6	7
57	Distinct and dementiaâ€related synaptopathy in the hippocampus after military blast exposures. Brain Pathology, 2021, 31, e12936.	4.1	6
58	Potential Alzheimer's Disease Therapeutics Among Weak Cysteine Protease Inhibitors Exhibit Mechanistic Differences Regarding Extent of Cathepsin B Up-Regulation and Ability to Block Calpain. European Scientific Journal, 2017, 13, 38-59.	0.1	5
59	Effects on Neurons and Hippocampal Slices by Single and Multiple Primary Blast Pressure Waves From Detonating Spherical Cyclotrimethylenetrinitramine (RDX) Explosive Charges. Military Medicine, 2018, 183, 269-275.	0.8	5
60	Paraoxon: An Anticholinesterase That Triggers an Excitotoxic Cascade of Oxidative Stress, Adhesion Responses, and Synaptic Compromise. European Scientific Journal, 2017, 13, 29-37.	0.1	3
61	A Single Pathway Targets Several Health Challenges of the Elderly. Rejuvenation Research, 2014, 17, 382-384.	1.8	1
62	Military blast-induced synaptic changes with distinct vulnerability may explain behavioral alterations in the absence of obvious brain damage. Journal of Nature and Science, 2017, 3, .	1.1	1
63	Selective modulation of the endocannabinoid system for targeted protection in kainic acid models of excitotoxicity. FASEB Journal, 2011, 25, lb420.	0.5	0
64	Stimulation of autophagy and synaptic maintenance are commonalities induced by an exerciseâ€mimetic and diet supplement to avoid initiators of ageâ€related cognitive decline. FASEB Journal, 2022, 36, .	0.5	0
65	Distinct ginseng extracts produce disparate effects on proteostatic support through the autophagy $\hat{\epsilon}$ by sosomal pathway that is linked to synaptic resilience and cognitive health. FASEB Journal,	0.5	0