Takashi Hashimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6414377/publications.pdf

Version: 2024-02-01

80 papers

6,028 citations

44 h-index

57758

74163 75 g-index

82 all docs 82 docs citations

times ranked

82

4476 citing authors

#	Article	IF	CITATIONS
1	Hyperosmotic stress-induced microtubule disassembly in Chlamydomonas reinhardtii. BMC Plant Biology, 2022, 22, 46.	3.6	O
2	Suppression of Cortical Microtubule Reorientation and Stimulation of Cell Elongation in Arabidopsis Hypocotyls under Microgravity Conditions in Space. Plants, 2022, 11, 465.	3. 5	6
3	An anchoring complex recruits katanin for microtubule severing at the plant cortical nucleation sites. Nature Communications, 2021, 12, 3687.	12.8	18
4	Mechanistic Insights into Plant Chiral Growth. Symmetry, 2020, 12, 2056.	2.2	14
5	Genetic Manipulation of Transcriptional Regulators Alters Nicotine Biosynthesis in Tobacco. Plant and Cell Physiology, 2020, 61, 1041-1053.	3.1	30
6	Affinity purification of tubulin from plant materials. Methods in Cell Biology, 2020, 160, 263-280.	1.1	1
7	Basic Proline-Rich Protein-Mediated Microtubules Are Essential for Lobe Growth and Flattened Cell Geometry. Plant Physiology, 2019, 181, 1535-1551.	4.8	23
8	Identification of genes regulated by a jasmonate- and salt-inducible transcription factor JRE3 in tomato. Plant Biotechnology, 2019, 36, 29-37.	1.0	7
9	Expression of a tobacco nicotine biosynthesis gene depends on the JRE4 transcription factor in heterogenous tomato. Journal of Plant Research, 2019, 132, 173-180.	2.4	8
10	Insights into cortical microtubule nucleation and dynamics in Arabidopsis leaf cells. Journal of Cell Science, 2018, 131, .	2.0	11
11	<scp>JRE</scp> 4 is a master transcriptional regulator of defenseâ€related steroidal glycoalkaloids in tomato. Plant Journal, 2018, 94, 975-990.	5 . 7	73
12	Modification of growth anisotropy and cortical microtubule dynamics in Arabidopsis hypocotyls grown under microgravity conditions in space. Physiologia Plantarum, 2018, 162, 135-144.	5 . 2	29
13	Genomic Insights into the Evolution of the Nicotine Biosynthesis Pathway in Tobacco. Plant Physiology, 2017, 174, 999-1011.	4.8	97
14	A model for evolution and regulation of nicotine biosynthesis regulon in tobacco. Plant Signaling and Behavior, 2017, 12, e1338225.	2.4	12
15	Jasmonate-induced biosynthesis of steroidal glycoalkaloids depends on COI1 proteins in tomato. Biochemical and Biophysical Research Communications, 2017, 489, 206-210.	2.1	34
16	Directional cell expansion requires NIMA-related kinase 6 (NEK6)-mediated cortical microtubule destabilization. Scientific Reports, 2017, 7, 7826.	3.3	13
17	Novel Arabidopsis microtubule-associated proteins track growing microtubule plus ends. BMC Plant Biology, 2017, 17, 33.	3. 6	18
18	Jasmonate-Responsive ERF Transcription Factors Regulate Steroidal Glycoalkaloid Biosynthesis in Tomato. Plant and Cell Physiology, 2016, 57, 961-975.	3.1	112

#	Article	IF	Citations
19	Affinity Purification and Characterization of Functional Tubulin from Cell Suspension Cultures of Arabidopsis and Tobacco. Plant Physiology, 2016, 170, 1189-1205.	4.8	30
20	Tobacco NUP1 transports both tobacco alkaloids and vitamin B6. Phytochemistry, 2015, 113, 33-40.	2.9	34
21	Polyamine-Derived Alkaloids in Plants: Molecular Elucidation of Biosynthesis., 2015,, 189-200.		9
22	Stress-induced expression of NICOTINE2-locus genes and their homologs encoding Ethylene Response Factor transcription factors in tobacco. Phytochemistry, 2015, 113, 41-49.	2.9	30
23	Microtubules in Plants. The Arabidopsis Book, 2015, 13, e0179.	0.5	68
24	Molecular Evolution of N-Methylputrescine Oxidase in Tobacco. Plant and Cell Physiology, 2014, 55, 436-444.	3.1	53
25	Tobacco Nicotine Uptake Permease Regulates the Expression of a Key Transcription Factor Gene in the Nicotine Biosynthesis Pathway. Plant Physiology, 2014, 166, 2195-2204.	4.8	31
26	GCP-WD Mediates \hat{I}^3 -TuRC Recruitment and the Geometry of Microtubule Nucleation in Interphase Arrays of Arabidopsis. Current Biology, 2014, 24, 2548-2555.	3.9	38
27	Microtubule Nucleation. , 2014, , 1-11.		0
28	An Atypical Tubulin Kinase Mediates Stress-Induced Microtubule Depolymerization in Arabidopsis. Current Biology, 2013, 23, 1969-1978.	3.9	112
29	Jasmonate-Responsive Transcription Factors: New Tools for Metabolic Engineering and Gene Discovery., 2013,, 345-357.		4
30	A ring for all: \hat{I}^3 -tubulin-containing nucleation complexes in acentrosomal plant microtubule arrays. Current Opinion in Plant Biology, 2013, 16, 698-703.	7.1	28
31	α-Tubulin is Rapidly Phosphorylated in Response to Hyperosmotic Stress in Rice and Arabidopsis. Plant and Cell Physiology, 2013, 54, 848-858.	3.1	52
32	Purification and Characterization of Novel Microtubule-Associated Proteins from Arabidopsis Cell Suspension Cultures Â. Plant Physiology, 2013, 163, 1804-1816.	4.8	60
33	Divergent DNA-Binding Specificities of a Group of ETHYLENE RESPONSE FACTOR Transcription Factors Involved in Plant Defense Â. Plant Physiology, 2013, 162, 977-990.	4.8	61
34	Dissecting the cellular functions of plant microtubules using mutant tubulins. Cytoskeleton, 2013, 70, 191-200.	2.0	20
35	Smoking out the masters: transcriptional regulators for nicotine biosynthesis in tobacco. Plant Biotechnology, 2013, 30, 217-224.	1.0	27
36	Root-to-shoot Translocation of Alkaloids is Dominantly Suppressed in Nicotiana alata. Plant and Cell Physiology, 2012, 53, 1247-1254.	3.1	19

3

#	Article	IF	CITATIONS
37	DNA-binding and transcriptional activation properties of tobacco <i>NIC2</i> -locus ERF189 and related transcription factors. Plant Biotechnology, 2012, 29, 35-42.	1.0	33
38	Arabidopsis GCP3 $\hat{a}\in \hat{f}$ interacting protein $\hat{a}\in f1/MOZART\hat{a}\in f1$ is an integral component of the $\hat{f}^3\hat{a}\in \hat{f}$ ubulin $\hat{a}\in \hat{f}$ ontaini microtubule nucleating complex. Plant Journal, 2012, 71, 216-225.	ng 5. 7	70
39	Recruitment of a duplicated primary metabolism gene into the nicotine biosynthesis regulon in tobacco. Plant Journal, 2011, 67, 949-959.	5.7	72
40	NIMAâ€related kinases 6, 4, and 5 interact with each other to regulate microtubule organization during epidermal cell expansion in <i>Arabidopsis thaliana</i> . Plant Journal, 2011, 67, 993-1005.	5.7	41
41	Salt Stress–Induced Disassembly of <i>Arabidopsis</i> Proteasome–Dependent Degradation of SPIRAL1 Â. Plant Cell, 2011, 23, 3412-3427.	6.6	115
42	Tobacco MYC2 Regulates Jasmonate-Inducible Nicotine Biosynthesis Genes Directly and By Way of the NIC2-Locus ERF Genes. Plant and Cell Physiology, 2011, 52, 1117-1130.	3.1	200
43	Vacuole-Localized Berberine Bridge Enzyme-Like Proteins Are Required for a Late Step of Nicotine Biosynthesis in Tobacco1 Â Â. Plant Physiology, 2011, 155, 2010-2022.	4.8	87
44	Non-cell-autonomous microRNA165 acts in a dose-dependent manner to regulate multiple differentiation status in the <i>Arabidopsis</i> root. Development (Cambridge), 2011, 138, 2303-2313.	2.5	243
45	Microtubule and Cell Shape Determination. Advances in Plant Biology, 2011, , 245-257.	0.8	6
46	Mitogen-activated protein kinase phosphatase PHS1 is retained in the cytoplasm by nuclear extrusion signal-dependent and independent mechanisms. Planta, 2010, 231, 1311-1322.	3.2	15
47	Microtubule and katanin-dependent dynamics of microtubule nucleation complexes in the acentrosomal Arabidopsis cortical array. Nature Cell Biology, 2010, 12, 1064-1070.	10.3	214
48	Clustered Transcription Factor Genes Regulate Nicotine Biosynthesis in Tobacco Â. Plant Cell, 2010, 22, 3390-3409.	6.6	236
49	Nuclear-localized subtype of end-binding 1 protein regulates spindle organization in $\langle i \rangle$ Arabidopsis $\langle i \rangle$. Journal of Cell Science, 2010, 123, 451-459.	2.0	74
50	Gravity-Induced Modifications to Development in Hypocotyls of Arabidopsis Tubulin Mutants. Plant Physiology, 2010, 152, 918-926.	4.8	45
51	A mutation in the $\langle i \rangle$ Arabidopsis $\langle i \rangle$ 1 stubulin-containing complex causes helical growth and abnormal microtubule branching. Journal of Cell Science, 2009, 122, 2208-2217.	2.0	92
52	Multidrug and Toxic Compound Extrusion-Type Transporters Implicated in Vacuolar Sequestration of Nicotine in Tobacco Roots Â. Plant Physiology, 2009, 149, 708-718.	4.8	184
53	A PIP-family protein is required for biosynthesis of tobacco alkaloids. Plant Molecular Biology, 2009, 69, 287-298.	3.9	91
54	Why does Anatabine, But not Nicotine, Accumulate in Jasmonate-Elicited Cultured Tobacco BY-2 Cells?. Plant and Cell Physiology, 2008, 49, 1209-1216.	3.1	35

#	Article	IF	CITATIONS
55	Jasmonate-Induced Nicotine Formation in Tobacco is Mediated by Tobacco COI1 and JAZ Genes. Plant and Cell Physiology, 2008, 49, 1003-1012.	3.1	156
56	<i>Arabidopsis</i> SPIRAL2 promotes uninterrupted microtubule growth by suppressing the pause state of microtubule dynamics. Journal of Cell Science, 2008, 121, 2372-2381.	2.0	84
57	Molecular Cloning of N-methylputrescine Oxidase from Tobacco. Plant and Cell Physiology, 2007, 48, 550-554.	3.1	102
58	Helical microtubule arrays in a collection of twisting tubulin mutants of Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8544-8549.	7.1	153
59	Twisted growth and organization of cortical microtubules. Journal of Plant Research, 2007, 120, 61-70.	2.4	90
60	An Arabidopsis thaliana tubulin mutant with conditional root-skewing phenotype. Journal of Plant Research, 2007, 120, 635-640.	2.4	19
61	Cortical control of plant microtubules. Current Opinion in Plant Biology, 2006, 9, 5-11.	7.1	49
62	Role of the SPIRAL1 Gene Family in Anisotropic Growth of Arabidopsis thaliana. Plant and Cell Physiology, 2006, 47, 513-522.	3.1	75
63	Salt Stress Affects Cortical Microtubule Organization and Helical Growth in Arabidopsis. Plant and Cell Physiology, 2006, 47, 1158-1168.	3.1	125
64	Early Steps in the Biosynthesis of NAD in Arabidopsis Start with Aspartate and Occur in the Plastid. Plant Physiology, 2006, 141, 851-857.	4.8	196
65	Altered microtubule dynamics by expression of modified \hat{l} ±-tubulin protein causes right-handed helical growth in transgenic Arabidopsis plants. Plant Journal, 2005, 43, 191-204.	5.7	103
66	Molecular regulation of nicotine biosynthesis. Plant Biotechnology, 2005, 22, 389-392.	1.0	44
67	Molecular biology of pyridine nucleotide and nicotine biosynthesis. Frontiers in Bioscience - Landmark, 2004, 9, 1577.	3.0	94
68	Low Concentrations of Propyzamide and Oryzalin Alter Microtubule Dynamics in Arabidopsis Epidermal Cells. Plant and Cell Physiology, 2004, 45, 1330-1334.	3.1	143
69	Microtubule Defects and Cell Morphogenesis in the lefty1lefty2 Tubulin Mutant of Arabidopsis thaliana. Plant and Cell Physiology, 2004, 45, 211-220.	3.1	89
70	Plant-Specific Microtubule-Associated Protein SPIRAL2 Is Required for Anisotropic Growth in Arabidopsis. Plant Physiology, 2004, 136, 3933-3944.	4.8	137
71	A Semidominant Mutation in an Arabidopsis Mitogen-Activated Protein Kinase Phosphatase-Like Gene Compromises Cortical Microtubule Organization[W]. Plant Cell, 2004, 16, 1841-1853.	6.6	89
72	SPIRAL1 Encodes a Plant-Specific Microtubule-Localized Protein Required for Directional Control of Rapidly Expanding Arabidopsis Cells[W]. Plant Cell, 2004, 16, 1178-1190.	6.6	163

#	Article	IF	CITATIONS
73	Dynamics and regulation of plant interphase microtubules: a comparative view. Current Opinion in Plant Biology, 2003, 6, 568-576.	7.1	40
74	Molecular genetic analysis of left–right handedness in plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 799-808.	4.0	118
75	Microtubule basis for left-handed helical growth in Arabidopsis. Nature, 2002, 417, 193-196.	27.8	284
76	Expression patterns of two tobacco isoflavone reductase-like genes and their possible roles in secondary metabolism in tobacco. Plant Molecular Biology, 2002, 50, 427-440.	3.9	90
77	Jasmonate Induction of Putrescine N-Methyltransferase Genes in the Root of Nicotiana sylvestris. Plant and Cell Physiology, 2000, 41, 831-839.	3.1	181
78	Ethylene Suppresses Jasmonate-Induced Gene Expression in Nicotine Biosynthesis. Plant and Cell Physiology, 2000, 41, 1072-1076.	3.1	101
79	Differential induction by methyl jasmonate of genes encoding ornithine decarboxylase and other enzymes involved in nicotine biosynthesis in tobacco cell cultures. Plant Molecular Biology, 1998, 38, 1101-1111.	3.9	167
80	Diamine Oxidase from Cultured Roots of Hyoscyamus niger. Plant Physiology, 1990, 93, 216-221.	4.8	77