
Takashi Hashimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6414377/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microtubule basis for left-handed helical growth in Arabidopsis. Nature, 2002, 417, 193-196.	27.8	284
2	Non-cell-autonomous microRNA165 acts in a dose-dependent manner to regulate multiple differentiation status in the <i>Arabidopsis</i> root. Development (Cambridge), 2011, 138, 2303-2313.	2.5	243
3	Clustered Transcription Factor Genes Regulate Nicotine Biosynthesis in Tobacco Â. Plant Cell, 2010, 22, 3390-3409.	6.6	236
4	Microtubule and katanin-dependent dynamics of microtubule nucleation complexes in the acentrosomal Arabidopsis cortical array. Nature Cell Biology, 2010, 12, 1064-1070.	10.3	214
5	Tobacco MYC2 Regulates Jasmonate-Inducible Nicotine Biosynthesis Genes Directly and By Way of the NIC2-Locus ERF Genes. Plant and Cell Physiology, 2011, 52, 1117-1130.	3.1	200
6	Early Steps in the Biosynthesis of NAD in Arabidopsis Start with Aspartate and Occur in the Plastid. Plant Physiology, 2006, 141, 851-857.	4.8	196
7	Multidrug and Toxic Compound Extrusion-Type Transporters Implicated in Vacuolar Sequestration of Nicotine in Tobacco Roots Â. Plant Physiology, 2009, 149, 708-718.	4.8	184
8	Jasmonate Induction of Putrescine N-Methyltransferase Genes in the Root of Nicotiana sylvestris. Plant and Cell Physiology, 2000, 41, 831-839.	3.1	181
9	Differential induction by methyl jasmonate of genes encoding ornithine decarboxylase and other enzymes involved in nicotine biosynthesis in tobacco cell cultures. Plant Molecular Biology, 1998, 38, 1101-1111.	3.9	167
10	SPIRAL1 Encodes a Plant-Specific Microtubule-Localized Protein Required for Directional Control of Rapidly Expanding Arabidopsis Cells[W]. Plant Cell, 2004, 16, 1178-1190.	6.6	163
11	Jasmonate-Induced Nicotine Formation in Tobacco is Mediated by Tobacco COI1 and JAZ Genes. Plant and Cell Physiology, 2008, 49, 1003-1012.	3.1	156
12	Helical microtubule arrays in a collection of twisting tubulin mutants of Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8544-8549.	7.1	153
13	Low Concentrations of Propyzamide and Oryzalin Alter Microtubule Dynamics in Arabidopsis Epidermal Cells. Plant and Cell Physiology, 2004, 45, 1330-1334.	3.1	143
14	Plant-Specific Microtubule-Associated Protein SPIRAL2 Is Required for Anisotropic Growth in Arabidopsis. Plant Physiology, 2004, 136, 3933-3944.	4.8	137
15	Salt Stress Affects Cortical Microtubule Organization and Helical Growth in Arabidopsis. Plant and Cell Physiology, 2006, 47, 1158-1168.	3.1	125
16	Molecular genetic analysis of left–right handedness in plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 799-808.	4.0	118
17	Salt Stress–Induced Disassembly of <i>Arabidopsis</i> Cortical Microtubule Arrays Involves 26S Proteasome–Dependent Degradation of SPIRAL1 Â. Plant Cell, 2011, 23, 3412-3427.	6.6	115
18	An Atypical Tubulin Kinase Mediates Stress-Induced Microtubule Depolymerization in Arabidopsis. Current Biology, 2013, 23, 1969-1978.	3.9	112

#	Article	IF	CITATIONS
19	Jasmonate-Responsive ERF Transcription Factors Regulate Steroidal Glycoalkaloid Biosynthesis in Tomato. Plant and Cell Physiology, 2016, 57, 961-975.	3.1	112
20	Altered microtubule dynamics by expression of modified α-tubulin protein causes right-handed helical growth in transgenic Arabidopsis plants. Plant Journal, 2005, 43, 191-204.	5.7	103
21	Molecular Cloning of N-methylputrescine Oxidase from Tobacco. Plant and Cell Physiology, 2007, 48, 550-554.	3.1	102
22	Ethylene Suppresses Jasmonate-Induced Gene Expression in Nicotine Biosynthesis. Plant and Cell Physiology, 2000, 41, 1072-1076.	3.1	101
23	Genomic Insights into the Evolution of the Nicotine Biosynthesis Pathway in Tobacco. Plant Physiology, 2017, 174, 999-1011.	4.8	97
24	Molecular biology of pyridine nucleotide and nicotine biosynthesis. Frontiers in Bioscience - Landmark, 2004, 9, 1577.	3.0	94
25	A mutation in the <i>Arabidopsis</i> γ-tubulin-containing complex causes helical growth and abnormal microtubule branching. Journal of Cell Science, 2009, 122, 2208-2217.	2.0	92
26	A PIP-family protein is required for biosynthesis of tobacco alkaloids. Plant Molecular Biology, 2009, 69, 287-298.	3.9	91
27	Expression patterns of two tobacco isoflavone reductase-like genes and their possible roles in secondary metabolism in tobacco. Plant Molecular Biology, 2002, 50, 427-440.	3.9	90
28	Twisted growth and organization of cortical microtubules. Journal of Plant Research, 2007, 120, 61-70.	2.4	90
29	Microtubule Defects and Cell Morphogenesis in the lefty1lefty2 Tubulin Mutant of Arabidopsis thaliana. Plant and Cell Physiology, 2004, 45, 211-220.	3.1	89
30	A Semidominant Mutation in an Arabidopsis Mitogen-Activated Protein Kinase Phosphatase-Like Gene Compromises Cortical Microtubule Organization[W]. Plant Cell, 2004, 16, 1841-1853.	6.6	89
31	Vacuole-Localized Berberine Bridge Enzyme-Like Proteins Are Required for a Late Step of Nicotine Biosynthesis in Tobacco1 Â Â. Plant Physiology, 2011, 155, 2010-2022.	4.8	87
32	<i>Arabidopsis</i> SPIRAL2 promotes uninterrupted microtubule growth by suppressing the pause state of microtubule dynamics. Journal of Cell Science, 2008, 121, 2372-2381.	2.0	84
33	Diamine Oxidase from Cultured Roots of Hyoscyamus niger. Plant Physiology, 1990, 93, 216-221.	4.8	77
34	Role of the SPIRAL1 Gene Family in Anisotropic Growth of Arabidopsis thaliana. Plant and Cell Physiology, 2006, 47, 513-522.	3.1	75
35	Nuclear-localized subtype of end-binding 1 protein regulates spindle organization in <i>Arabidopsis</i> . Journal of Cell Science, 2010, 123, 451-459.	2.0	74
36	<scp>JRE</scp> 4 is a master transcriptional regulator of defenseâ€related steroidal glycoalkaloids in tomato. Plant Journal, 2018, 94, 975-990.	5.7	73

#	Article	IF	CITATIONS
37	Recruitment of a duplicated primary metabolism gene into the nicotine biosynthesis regulon in tobacco. Plant Journal, 2011, 67, 949-959.	5.7	72
38	Arabidopsis GCP3â€interacting protein 1/MOZART 1 is an integral component of the γâ€ŧubulin ontain microtubule nucleating complex. Plant Journal, 2012, 71, 216-225.	ng 9.7	70
39	Microtubules in Plants. The Arabidopsis Book, 2015, 13, e0179.	0.5	68
40	Divergent DNA-Binding Specificities of a Group of ETHYLENE RESPONSE FACTOR Transcription Factors Involved in Plant Defense Â. Plant Physiology, 2013, 162, 977-990.	4.8	61
41	Purification and Characterization of Novel Microtubule-Associated Proteins from Arabidopsis Cell Suspension Cultures Â. Plant Physiology, 2013, 163, 1804-1816.	4.8	60
42	Molecular Evolution of N-Methylputrescine Oxidase in Tobacco. Plant and Cell Physiology, 2014, 55, 436-444.	3.1	53
43	α-Tubulin is Rapidly Phosphorylated in Response to Hyperosmotic Stress in Rice and Arabidopsis. Plant and Cell Physiology, 2013, 54, 848-858.	3.1	52
44	Cortical control of plant microtubules. Current Opinion in Plant Biology, 2006, 9, 5-11.	7.1	49
45	Gravity-Induced Modifications to Development in Hypocotyls of Arabidopsis Tubulin Mutants. Plant Physiology, 2010, 152, 918-926.	4.8	45
46	Molecular regulation of nicotine biosynthesis. Plant Biotechnology, 2005, 22, 389-392.	1.0	44
47	NIMAâ€related kinases 6, 4, and 5 interact with each other to regulate microtubule organization during epidermal cell expansion in <i>Arabidopsis thaliana</i> . Plant Journal, 2011, 67, 993-1005.	5.7	41
48	Dynamics and regulation of plant interphase microtubules: a comparative view. Current Opinion in Plant Biology, 2003, 6, 568-576.	7.1	40
49	GCP-WD Mediates Î ³ -TuRC Recruitment and the Geometry of Microtubule Nucleation in Interphase Arrays of Arabidopsis. Current Biology, 2014, 24, 2548-2555.	3.9	38
50	Why does Anatabine, But not Nicotine, Accumulate in Jasmonate-Elicited Cultured Tobacco BY-2 Cells?. Plant and Cell Physiology, 2008, 49, 1209-1216.	3.1	35
51	Tobacco NUP1 transports both tobacco alkaloids and vitamin B6. Phytochemistry, 2015, 113, 33-40.	2.9	34
52	Jasmonate-induced biosynthesis of steroidal glycoalkaloids depends on COI1 proteins in tomato. Biochemical and Biophysical Research Communications, 2017, 489, 206-210.	2.1	34
53	DNA-binding and transcriptional activation properties of tobacco <i>NIC2</i> -locus ERF189 and related transcription factors. Plant Biotechnology, 2012, 29, 35-42.	1.0	33
54	Tobacco Nicotine Uptake Permease Regulates the Expression of a Key Transcription Factor Gene in the Nicotine Biosynthesis Pathway. Plant Physiology, 2014, 166, 2195-2204.	4.8	31

#	Article	IF	CITATIONS
55	Stress-induced expression of NICOTINE2-locus genes and their homologs encoding Ethylene Response Factor transcription factors in tobacco. Phytochemistry, 2015, 113, 41-49.	2.9	30
56	Affinity Purification and Characterization of Functional Tubulin from Cell Suspension Cultures of Arabidopsis and Tobacco. Plant Physiology, 2016, 170, 1189-1205.	4.8	30
57	Genetic Manipulation of Transcriptional Regulators Alters Nicotine Biosynthesis in Tobacco. Plant and Cell Physiology, 2020, 61, 1041-1053.	3.1	30
58	Modification of growth anisotropy and cortical microtubule dynamics in Arabidopsis hypocotyls grown under microgravity conditions in space. Physiologia Plantarum, 2018, 162, 135-144.	5.2	29
59	A ring for all: Î ³ -tubulin-containing nucleation complexes in acentrosomal plant microtubule arrays. Current Opinion in Plant Biology, 2013, 16, 698-703.	7.1	28
60	Smoking out the masters: transcriptional regulators for nicotine biosynthesis in tobacco. Plant Biotechnology, 2013, 30, 217-224.	1.0	27
61	Basic Proline-Rich Protein-Mediated Microtubules Are Essential for Lobe Growth and Flattened Cell Geometry. Plant Physiology, 2019, 181, 1535-1551.	4.8	23
62	Dissecting the cellular functions of plant microtubules using mutant tubulins. Cytoskeleton, 2013, 70, 191-200.	2.0	20
63	An Arabidopsis thaliana tubulin mutant with conditional root-skewing phenotype. Journal of Plant Research, 2007, 120, 635-640.	2.4	19
64	Root-to-shoot Translocation of Alkaloids is Dominantly Suppressed in Nicotiana alata. Plant and Cell Physiology, 2012, 53, 1247-1254.	3.1	19
65	Novel Arabidopsis microtubule-associated proteins track growing microtubule plus ends. BMC Plant Biology, 2017, 17, 33.	3.6	18
66	An anchoring complex recruits katanin for microtubule severing at the plant cortical nucleation sites. Nature Communications, 2021, 12, 3687.	12.8	18
67	Mitogen-activated protein kinase phosphatase PHS1 is retained in the cytoplasm by nuclear extrusion signal-dependent and independent mechanisms. Planta, 2010, 231, 1311-1322.	3.2	15
68	Mechanistic Insights into Plant Chiral Growth. Symmetry, 2020, 12, 2056.	2.2	14
69	Directional cell expansion requires NIMA-related kinase 6 (NEK6)-mediated cortical microtubule destabilization. Scientific Reports, 2017, 7, 7826.	3.3	13
70	A model for evolution and regulation of nicotine biosynthesis regulon in tobacco. Plant Signaling and Behavior, 2017, 12, e1338225.	2.4	12
71	Insights into cortical microtubule nucleation and dynamics in Arabidopsis leaf cells. Journal of Cell Science, 2018, 131, .	2.0	11
72	Polyamine-Derived Alkaloids in Plants: Molecular Elucidation of Biosynthesis. , 2015, , 189-200.		9

Polyamine-Derived Alkaloids in Plants: Molecular Elucidation of Biosynthesis. , 2015, , 189-200. 72

#	Article	IF	CITATIONS
73	Expression of a tobacco nicotine biosynthesis gene depends on the JRE4 transcription factor in heterogenous tomato. Journal of Plant Research, 2019, 132, 173-180.	2.4	8
74	Identification of genes regulated by a jasmonate- and salt-inducible transcription factor JRE3 in tomato. Plant Biotechnology, 2019, 36, 29-37.	1.0	7
75	Microtubule and Cell Shape Determination. Advances in Plant Biology, 2011, , 245-257.	0.8	6
76	Suppression of Cortical Microtubule Reorientation and Stimulation of Cell Elongation in Arabidopsis Hypocotyls under Microgravity Conditions in Space. Plants, 2022, 11, 465.	3.5	6
77	Jasmonate-Responsive Transcription Factors: New Tools for Metabolic Engineering and Gene Discovery. , 2013, , 345-357.		4
78	Affinity purification of tubulin from plant materials. Methods in Cell Biology, 2020, 160, 263-280.	1.1	1
79	Microtubule Nucleation. , 2014, , 1-11.		0
80	Hyperosmotic stress-induced microtubule disassembly in Chlamydomonas reinhardtii. BMC Plant Biology, 2022, 22, 46.	3.6	0