
Andrew D Cox

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6414065/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure of the lipopolysaccharide O-antigens from Fusobacterium nucleatum strains SB-106CP and HM-992 and immunological comparison to the O-antigen of strain 12230. Carbohydrate Research, 2022, 517, 108576.	2.3	1
2	Structural Characterization and Evaluation of an Epitope at the Tip of the A-Band Rhamnan Polysaccharide of <i>Pseudomonas aeruginosa</i> . ACS Infectious Diseases, 2022, 8, 1336-1346.	3.8	3
3	Synthesis and Immunogenicity of a Methyl Rhamnan Pentasaccharide Conjugate from <i>Pseudomonas aeruginosa</i> A-Band Polysaccharide. ACS Infectious Diseases, 2022, 8, 1347-1355.	3.8	4
4	Comparison of polysaccharide glycoconjugates as candidate vaccines to combat Clostridiodes (Clostridium) difficile. Glycoconjugate Journal, 2021, 38, 493-508.	2.7	6
5	Structural analysis of the core oligosaccharides from Fusobacterium nucleatum lipopolysaccharides. Carbohydrate Research, 2021, 499, 108198.	2.3	0
6	The capsular polysaccharides of Pasteurella multocida serotypes B and E: Structural, genetic and serological comparisons. Glycobiology, 2021, 31, 307-314.	2.5	5
7	<scp>d</scp> - <i>Glycero</i> -β- <scp>d</scp> - <i>manno</i> heptose Phosphate 7- <i>O</i> -Modifications. Journal of Organic Chemistry, 2021, 86, 2184-2199.	3.2	3
8	Cross-reactivity of Haemophilus influenzae type a and b polysaccharides: molecular modeling and conjugate immunogenicity studies. Glycoconjugate Journal, 2021, 38, 735-746.	2.7	4
9	Structural analysis of the lipopolysaccharide O-antigen from Fusobacterium nucleatum strain CC 7/3 JVN3 C1 and development of a mouse monoclonal antibody specific to the O-antigen. Canadian Journal of Microbiology, 2020, 66, 529-534.	1.7	1
10	Development and Characterization of Mouse Monoclonal Antibodies Specific for <i>Clostridiodes (Clostridium) difficile</i> Lipoteichoic Acid. ACS Chemical Biology, 2020, 15, 1050-1058.	3.4	7
11	Mitigating base-catalysed degradation of periodate-oxidized capsular polysaccharides: Conjugation by reductive amination in acidic media. Vaccine, 2019, 37, 1087-1093.	3.8	6
12	Removal of cell wall polysaccharide in pneumococcal capsular polysaccharides by selective degradation via deamination. Carbohydrate Polymers, 2019, 218, 199-207.	10.2	3
13	Investigating the candidacy of the serotype specific rhamnan polysaccharide based glycoconjugates to prevent disease caused by the dental pathogen Streptococcus mutans. Glycoconjugate Journal, 2018, 35, 53-64.	2.7	22
14	<scp>d</scp> -Glycero-β- <scp>d</scp> -Manno-Heptose 1-Phosphate and <scp>d</scp> -Glycero-β- <scp>d</scp> -Manno-Heptose 1,7-Biphosphate Are Both Innate Immune Agonists. Journal of Immunology, 2018, 201, 2385-2391.	0.8	17
15	Characterization of natural bactericidal antibody against Haemophilus influenzae type a in Canadian First Nations: A Canadian Immunization Research Network (CIRN) Clinical Trials Network (CTN) study. PLoS ONE, 2018, 13, e0201282.	2.5	4
16	Structure of the LPS O-chain from Fusobacterium nucleatum strain MJR 7757†B. Carbohydrate Research, 2018, 463, 37-39.	2.3	11
17	Structure of the LPS O-chain from Fusobacterium nucleatum strain ATCC 23726 containing a novel 5,7-diamino-3,5,7,9-tetradeoxy-l-gluco-non-2-ulosonic acid presumably having the d-glycero-l-gluco configuration. Carbohydrate Research, 2018, 468, 69-72.	2.3	14
18	A Novel Sialylation Site on Neisseria gonorrhoeae Lipooligosaccharide Links Heptose II Lactose Expression with Pathogenicity. Infection and Immunity, 2018, 86, .	2.2	29

#	Article	IF	CITATIONS
19	The structure of the LPS O-chain of Fusobacterium nucleatum strain 25586 containing two novel monosaccharides, 2-acetamido-2,6-dideoxy- I -altrose and a 5-acetimidoylamino-3,5,9-trideoxy- gluco -non-2-ulosonic acid. Carbohydrate Research, 2017, 440-441, 10-15.	2.3	29
20	Structure of the LPS O-chain from Fusobacterium nucleatum strain 10953, containing sialic acid. Carbohydrate Research, 2017, 440-441, 38-42.	2.3	23
21	Investigating the candidacy of a capsular polysaccharide-based glycoconjugate as a vaccine to combat Haemophilus influenzae type a disease: A solution for an unmet public health need. Vaccine, 2017, 35, 6129-6136.	3.8	23
22	Alternate synthesis to d -glycero-β- d -manno-heptose 1,7-biphosphate. Carbohydrate Research, 2017, 450, 38-43.	2.3	9
23	Characterization of Two Novel Lipopolysaccharide Phosphoethanolamine Transferases in Pasteurella multocida and Their Role in Resistance to Cathelicidin-2. Infection and Immunity, 2017, 85, .	2.2	14
24	First characterization of immunogenic conjugates of Vi negative Salmonella Typhi O-specific polysaccharides with rEPA protein for vaccine development. Journal of Immunological Methods, 2017, 450, 27-33.	1.4	3
25	Structure of the LPS O-chain from Fusobacterium nucleatum strain 12230. Carbohydrate Research, 2017, 448, 115-117.	2.3	11
26	Phase-Variable Heptose I Glycan Extensions Modulate Efficacy of 2C7 Vaccine Antibody Directed against <i>Neisseria gonorrhoeae</i> Lipooligosaccharide. Journal of Immunology, 2016, 196, 4576-4586.	0.8	31
27	Protective efficacy afforded by live Pasteurella multocida vaccines in chickens is independent of lipopolysaccharide outer core structure. Vaccine, 2016, 34, 1696-1703.	3.8	25
28	Naturally occurring bactericidal antibodies specific for Haemophilus influenzae Lipooligosaccharide are present in healthy adult individuals. Vaccine, 2015, 33, 1941-1947.	3.8	7
29	Cytosolic detection of the bacterial metabolite HBP activates TIFA-dependent innate immunity. Science, 2015, 348, 1251-1255.	12.6	134
30	Antigenic Potential of a Highly Conserved Neisseria meningitidis Lipopolysaccharide Inner Core Structure Defined by Chemical Synthesis. Chemistry and Biology, 2015, 22, 38-49.	6.0	41
31	Naturally Acquired Antibodies againstHaemophilus influenzaeType a in Aboriginal Adults, Canada. Emerging Infectious Diseases, 2015, 21, 273-279.	4.3	10
32	Development of a Rapid Multiplex PCR Assay To Genotype Pasteurella multocida Strains by Use of the Lipopolysaccharide Outer Core Biosynthesis Locus. Journal of Clinical Microbiology, 2015, 53, 477-485.	3.9	89
33	Characterization of the lipopolysaccharide produced by Pasteurella multocida serovars 6, 7 and 16: Identification of lipopolysaccharide genotypes L4 and L8. Glycobiology, 2015, 25, 294-302.	2.5	8
34	Utilizing CMP-Sialic Acid Analogs to Unravel Neisseria gonorrhoeae Lipooligosaccharide-Mediated Complement Resistance and Design Novel Therapeutics. PLoS Pathogens, 2015, 11, e1005290.	4.7	53
35	Activation of Innate Immune Responses by Haemophilus influenzae Lipooligosaccharide. Vaccine Journal, 2014, 21, 769-776.	3.1	17
36	Structural basis for selective cross-reactivity in a bactericidal antibody against inner core lipooligosaccharide from Neisseria meningitidisâ€,‡. Glycobiology, 2014, 24, 442-449.	2.5	20

#	Article	IF	CITATIONS
37	Structural analysis of lipopolysaccharide produced by Heddleston serovars 10, 11, 12 and 15 and the identification of a new Pasteurella multocida lipopolysaccharide outer core biosynthesis locus, L6. Clycobiology, 2014, 24, 649-659.	2.5	12
38	Structure and biosynthetic locus of the lipopolysaccharide outer core produced by Pasteurella multocida serovars 8 and 13 and the identification of a novel phospho-glycero moiety. Glycobiology, 2013, 23, 286-294.	2.5	13
39	Pasteurella multocida Heddleston Serovar 3 and 4 Strains Share a Common Lipopolysaccharide Biosynthesis Locus but Display both Inter- and Intrastrain Lipopolysaccharide Heterogeneity. Journal of Bacteriology, 2013, 195, 4854-4864.	2.2	37
40	Investigating the candidacy of a lipoteichoic acid-based glycoconjugate as a vaccine to combat Clostridium difficile infection. Glycoconjugate Journal, 2013, 30, 843-855.	2.7	46
41	The K1 Capsular Polysaccharide from Acinetobacter baumannii Is a Potential Therapeutic Target via Passive Immunization. Infection and Immunity, 2013, 81, 915-922.	2.2	131
42	Immunization against a Saccharide Epitope Accelerates Clearance of Experimental Gonococcal Infection. PLoS Pathogens, 2013, 9, e1003559.	4.7	63
43	Identification of N-acylethanolamines in Dictyostelium discoideum and confirmation of their hydrolysis by fatty acid amide hydrolase. Journal of Lipid Research, 2013, 54, 457-466.	4.2	6
44	Characterization of a trifunctional glucosyltransferase essential for Moraxella catarrhalis lipooligosaccharide assembly. Glycobiology, 2013, 23, 1013-1021.	2.5	15
45	<i>Neisseria gonorrhoeae-</i> derived heptose elicits an innate immune response and drives HIV-1 expression. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10234-10239.	7.1	54
46	Characterization of the lipopolysaccharide from Pasteurella multocida Heddleston serovar 9: Identification of a proposed bi-functional dTDP-3-acetamido-3,6-dideoxy-Â-D-glucose biosynthesis enzyme. Glycobiology, 2012, 22, 332-344.	2.5	13
47	Invasive Potential of Nonencapsulated Disease Isolates of Neisseria meningitidis. Infection and Immunity, 2012, 80, 2346-2353.	2.2	34
48	Identification and recombinant expression of anandamide hydrolyzing enzyme from Dictyostelium discoideum. BMC Microbiology, 2012, 12, 124.	3.3	2
49	Pasteurella multocida Heddleston serovars 1 and 14 express different lipopolysaccharide structures but share the same lipopolysaccharide biosynthesis outer core locus. Veterinary Microbiology, 2011, 150, 289-296.	1.9	30
50	Genetics and molecular specificity of sialylation of Histophilus somni lipooligosaccharide (LOS) and the effect of LOS sialylation on Toll-like receptor-4 signaling. Veterinary Microbiology, 2011, 153, 163-172.	1.9	14
51	Pasteurella multocida lipopolysaccharide: The long and the short of it. Veterinary Microbiology, 2011, 153, 109-115.	1.9	54
52	Investigating the potential of conserved inner core oligosaccharide regions of Moraxella catarrhalis lipopolysaccharide as vaccine antigens: accessibility and functional activity of monoclonal antibodies and glycoconjugate derived sera. Glycoconjugate Journal, 2011, 28, 165-182.	2.7	19
53	Investigating the candidacy of lipopolysaccharide-based glycoconjugates as vaccines to combat Mannheimia haemolytica. Glycoconjugate Journal, 2011, 28, 397-410.	2.7	11
54	Structural analyses of the core oligosaccharide from the lipopolysaccharide of bovine and ovine strains of Mannheimia haemolytica serotype 2. Carbohydrate Research, 2011, 346, 1333-1336.	2.3	4

#	Article	IF	CITATIONS
55	Identification, structure, and characterization of an exopolysaccharide produced by Histophilus somniduring biofilm formation. BMC Microbiology, 2011, 11, 186.	3.3	30
56	Attenuated virulence of min operon mutants of Neisseria gonorrhoeae and their interactions with human urethral epithelial cells. Microbes and Infection, 2011, 13, 545-554.	1.9	14
57	ArcA-Regulated Glycosyltransferase Lic2B Promotes Complement Evasion and Pathogenesis of Nontypeable Haemophilus influenzae. Infection and Immunity, 2011, 79, 1971-1983.	2.2	33
58	Investigating the candidacy of LPS-based glycoconjugates to prevent invasive meningococcal disease: chemical strategies to prepare glycoconjugates with good carbohydrate loading. Glycoconjugate Journal, 2010, 27, 401-417.	2.7	14
59	Investigating the candidacy of LPS-based glycoconjugates to prevent invasive meningococcal disease: immunology of glycoconjugates with high carbohydrate loading. Glycoconjugate Journal, 2010, 27, 643-648.	2.7	10
60	Natural Selection in the Chicken Host Identifies 3-Deoxy- <scp>d</scp> - <i>manno</i> - Octulosonic Acid Kinase Residues Essential for Phosphorylation of <i>Pasteurella multocida</i> Lipopolysaccharide. Infection and Immunity, 2010, 78, 3669-3677.	2.2	9
61	Functional Characterization of Lpt3 and Lpt6, the Inner-Core Lipooligosaccharide Phosphoethanolamine Transferases from <i>Neisseria meningitidis</i> . Journal of Bacteriology, 2010, 192, 208-216.	2.2	10
62	Identification and Characterization of a Glycosyltransferase Involved in <i>Acinetobacter baumannii</i> Lipopolysaccharide Core Biosynthesis. Infection and Immunity, 2010, 78, 2017-2023.	2.2	92
63	Colistin Resistance in <i>Acinetobacter baumannii</i> Is Mediated by Complete Loss of Lipopolysaccharide Production. Antimicrobial Agents and Chemotherapy, 2010, 54, 4971-4977.	3.2	699
64	Identification of Novel Glycosyltransferases Required for Assembly of the <i>Pasteurella multocida</i> A:1 Lipopolysaccharide and Their Involvement in Virulence. Infection and Immunity, 2009, 77, 1532-1542.	2.2	27
65	Phosphoethanolamine is located at the 6-position and not at the 7-position of the distal heptose residue in the lipopolysaccharide from Neisseria meningitidis. Glycobiology, 2009, 19, 1436-1445.	2.5	6
66	Use of Moraxella catarrhalis Lipooligosaccharide Mutants To Identify Specific Oligosaccharide Epitopes Recognized by Human Serum Antibodies. Infection and Immunity, 2009, 77, 4548-4558.	2.2	13
67	Molecular characterization of phosphorylcholine expression on the lipooligosaccharide of Histophilus somni. Microbial Pathogenesis, 2009, 47, 223-230.	2.9	18
68	Structural and Genetic Basis for the Serological Differentiation of <i>Pasteurella multocida</i> Heddleston Serotypes 2 and 5. Journal of Bacteriology, 2009, 191, 6950-6959.	2.2	34
69	Mutation in the LPS outer core biosynthesis gene, <i>galU</i> , affects LPS interaction with the RTX toxins ApxI and ApxII and cytolytic activity of <i>Actinobacillus pleuropneumoniae</i> serotype 1. Molecular Microbiology, 2008, 70, 221-235.	2.5	29
70	Naturally-occurring human serum antibodies to inner core lipopolysaccharide epitopes of Neisseria meningitidis protect against invasive meningococcal disease caused by isolates displaying homologous inner core structures. Vaccine, 2008, 26, 6655-6663.	3.8	22
71	Structural characterization of Haemophilus parainfluenzae lipooligosaccharide and elucidation of its role in adherence using an outer core mutant. Canadian Journal of Microbiology, 2008, 54, 906-917.	1.7	13
72	A unique glycosyltransferase involved in the initial assembly of Moraxella catarrhalis lipooligosaccharides. Glycobiology, 2008, 18, 447-455.	2.5	14

#	Article	IF	CITATIONS
73	Pasteurella multocida Expresses Two Lipopolysaccharide Glycoforms Simultaneously, but Only a Single Form Is Required for Virulence: Identification of Two Acceptor-Specific Heptosyl I Transferases. Infection and Immunity, 2007, 75, 3885-3893.	2.2	47
74	Heptose I Glycan Substitutions on Neisseria gonorrhoeae Lipooligosaccharide Influence C4b-Binding Protein Binding and Serum Resistance. Infection and Immunity, 2007, 75, 4071-4081.	2.2	24
75	Decoration of <i>Pasteurella multocida</i> Lipopolysaccharide with Phosphocholine Is Important for Virulence. Journal of Bacteriology, 2007, 189, 7384-7391.	2.2	44
76	Structural characterization of sialylated glycoforms ofH. influenzae by electrospray mass spectrometry: fragmentation of protonated and sodiatedO-deacylated lipopolysaccharides. Rapid Communications in Mass Spectrometry, 2007, 21, 952-960.	1.5	11
77	Structural analysis of the lipooligosaccharide-derived oligosaccharide of Histophilus somni (Haemophilus somnus) strain 8025. Carbohydrate Research, 2006, 341, 281-284.	2.3	6
78	Production of a d-glycero-d-manno-heptosyltransferase mutant of Mannheimia haemolytica displaying a veterinary pathogen specific conserved LPS structure; development and functionality of antibodies to this LPS structure. Veterinary Microbiology, 2006, 116, 175-186.	1.9	14
79	Identification of a Bifunctional Lipopolysaccharide Sialyltransferase in Haemophilus influenzae. Journal of Biological Chemistry, 2006, 281, 40024-40032.	3.4	53
80	Structural analysis of the lipopolysaccharide of Pasteurella multocida strain VP161: identification of both Kdo-P and Kdo–Kdo species in the lipopolysaccharide. Carbohydrate Research, 2005, 340, 59-68.	2.3	49
81	Structural analysis of the oligosaccharide of Histophilus somni (Haemophilus somnus) strain 2336 and identification of several lipooligosaccharide biosynthesis gene homologues. Carbohydrate Research, 2005, 340, 665-672.	2.3	21
82	Structural analysis of the core oligosaccharide from Pasteurella multocida strain X73. Carbohydrate Research, 2005, 340, 1253-1257.	2.3	31
83	Structural analysis of the lipopolysaccharide from Pasteurella multocida genome strain Pm70 and identification of the putative lipopolysaccharide glycosyltransferases. Clycobiology, 2005, 15, 323-333.	2.5	46
84	Isolation of an Atypical Strain of Actinobacillus pleuropneumoniae Serotype 1 with a Truncated Lipopolysaccharide Outer Core and No O-Antigen. Journal of Clinical Microbiology, 2005, 43, 3522-3525.	3.9	7
85	Enhanced Factor H Binding to Sialylated Gonococci Is Restricted to the Sialylated Lacto- N -Neotetraose Lipooligosaccharide Species: Implications for Serum Resistance and Evidence for a Bifunctional Lipooligosaccharide Sialyltransferase in Gonococci. Infection and Immunity, 2005, 73, 7390-7397.	2.2	63
86	Elucidation of the Monoclonal Antibody 5G8-Reactive, Virulence-Associated Lipopolysaccharide Epitope of Haemophilus influenzae and Its Role in Bacterial Resistance to Complement-Mediated Killing. Infection and Immunity, 2005, 73, 2213-2221.	2.2	13
87	Truncation of the Lipopolysaccharide Outer Core Affects Susceptibility to Antimicrobial Peptides and Virulence of Actinobacillus pleuropneumoniae Serotype 1. Journal of Biological Chemistry, 2005, 280, 39104-39114.	3.4	49
88	Digalactoside Expression in the Lipopolysaccharide of Haemophilus influenzae and Its Role in Intravascular Survival. Infection and Immunity, 2005, 73, 7022-7026.	2.2	19
89	Electrophoretic and mass spectrometric strategies for profiling bacterial lipopolysaccharides. Molecular BioSystems, 2005, 1, 46.	2.9	23
90	Biosynthesis of Cryptic Lipopolysaccharide Glycoforms in Haemophilus influenzae Involves a Mechanism Similar to That Required for O-Antigen Synthesis. Journal of Bacteriology, 2004, 186, 7429-7439.	2.2	45

#	Article	IF	CITATIONS
91	Development, Characterization, and Functional Activity of a Panel of Specific Monoclonal Antibodies to Inner Core Lipopolysaccharide Epitopes in Neisseria meningitidis. Infection and Immunity, 2004, 72, 559-569.	2.2	32
92	lpt6, a Gene Required for Addition of Phosphoethanolamine to Inner-Core Lipopolysaccharide of Neisseria meningitidis and Haemophilus influenzae. Journal of Bacteriology, 2004, 186, 6970-6982.	2.2	56
93	A Heptosyltransferase Mutant of Pasteurella multocida Produces a Truncated Lipopolysaccharide Structure and Is Attenuated in Virulence. Infection and Immunity, 2004, 72, 3436-3443.	2.2	62
94	Three genes, lgtF, lic2C and lpsA, have a primary role in determining the pattern of oligosaccharide extension from the inner core of Haemophilus influenzae LPS. Microbiology (United Kingdom), 2004, 150, 2089-2097.	1.8	47
95	Application of capillary electrophoresis- electrospray-mass spectrometry to the separation and characterization of isomeric lipopolysaccharides ofNeisseria meningitidis. Electrophoresis, 2004, 25, 2017-2025.	2.4	26
96	Structural analysis of the lipooligosaccharide from the commensal Haemophilus somnus genome strain 129Pt. Carbohydrate Research, 2004, 339, 529-535.	2.3	11
97	Characterisation of a tetrasaccharide released on mild acid hydrolysis of LPS from two rough strains of Shewanella species representing different DNA homology groups. Carbohydrate Research, 2004, 339, 1185-1188.	2.3	7
98	Structural analysis of the lipopolysaccharide derived core oligosaccharides of Actinobacillus pleuropneumoniae serotypes 1, 2, 5a and the genome strain 5b. Carbohydrate Research, 2004, 339, 1973-1984.	2.3	37
99	Structural analysis of the lipooligosaccharide from the commensal Haemophilussomnus strain 1P. Carbohydrate Research, 2003, 338, 1223-1228.	2.3	10
100	Identification of a novel inner-core oligosaccharide structure in Neisseria meningitidis lipopolysaccharide. FEBS Journal, 2003, 270, 1759-1766.	0.2	17
101	The role of lex2 in lipopolysaccharide biosynthesis in Haemophilus influenzae strains RM7004 and RM153. Microbiology (United Kingdom), 2003, 149, 3165-3175.	1.8	27
102	Phosphorylation of the Lipid A Region of Meningococcal Lipopolysaccharide: Identification of a Family of Transferases That Add Phosphoethanolamine to Lipopolysaccharide. Journal of Bacteriology, 2003, 185, 3270-3277.	2.2	115
103	Neisserial Lipooligosaccharide Is a Target for Complement Component C4b. Journal of Biological Chemistry, 2003, 278, 50853-50862.	3.4	82
104	Incorporation of N-Acetylneuraminic Acid into Haemophilus somnus Lipooligosaccharide (LOS): Enhancement of Resistance to Serum and Reduction of LOS Antibody Binding. Infection and Immunity, 2002, 70, 4870-4879.	2.2	61
105	Identification of a gene (lpt-3) required for the addition of phosphoethanolamine to the lipopolysaccharide inner core of Neisseria meningitidis and its role in mediating susceptibility to bactericidal killing and opsonophagocytosis. Molecular Microbiology, 2002, 43, 931-943.	2.5	91
106	Identification and structural characterization of a sialylated lacto-N-neotetraose structure in the lipopolysaccharide ofHaemophilus influenzae. FEBS Journal, 2002, 269, 4009-4019.	0.2	32
107	Identification and localization of glycine in the inner core lipopolysaccharide ofNeisseria meningitidis. FEBS Journal, 2002, 269, 4169-4175.	0.2	22
108	Structural analysis of the lipopolysaccharide from Neisseria meningitidis strain BZ157 galE: localisation of two phosphoethanolamine residues in the inner core oligosaccharide. Carbohydrate Research, 2002, 337, 1435-1444.	2.3	38

#	Article	IF	CITATIONS
109	Identification of a lipopolysaccharide alpha-2,3-sialyltransferase from Haemophilus influenzae. Molecular Microbiology, 2001, 39, 341-351.	2.5	121
110	Structural analysis of the lipopolysaccharide from the nontypable Haemophilus influenzae strain SB 33. FEBS Journal, 2001, 268, 5278-5286.	0.2	31
111	Structure and Functional Genomics of Lipopolysaccharide Expression inHaemophilus Influenzae. Advances in Experimental Medicine and Biology, 2001, 491, 515-524.	1.6	9
112	The position of phosphorylcholine on the lipopolysaccharide of Haemophilus influenzae affects binding and sensitivity to C-reactive protein-mediated killing. Molecular Microbiology, 2000, 35, 234-245.	2.5	146
113	Molecular Cloning and Mutagenesis of a DNA Locus Involved in Lipooligosaccharide Biosynthesis in <i>Haemophilus somnus</i> . Infection and Immunity, 2000, 68, 310-319.	2.2	37
114	Characterization of a DNA region containing 5′-(CAAT)n-3′ DNA sequences involved in lipooligosaccharide biosynthesis in Haemophilus somnus. Microbial Pathogenesis, 2000, 28, 301-312.	2.9	17
115	Antigenic Diversity of <i>Haemophilus somnus</i> Lipooligosaccharide: Phase-Variable Accessibility of the Phosphorylcholine Epitope. Journal of Clinical Microbiology, 2000, 38, 4412-4419.	3.9	26
116	Conservation and Accessibility of an Inner Core Lipopolysaccharide Epitope of <i>Neisseria meningitidis</i> . Infection and Immunity, 1999, 67, 5417-5426.	2.2	82
117	Structural analysis of the phase-variable lipooligosaccharide from Haemophilus somnus strain 738. FEBS Journal, 1998, 253, 507-516.	0.2	37
118	Structural analysis of the lipopolysaccharide from Vibrio cholerae serotype O22. Carbohydrate Research, 1997, 304, 191-208.	2.3	23
119	Structural analysis of the O-antigen-core region of the lipopolysaccharide from Vibrio cholerae O139. Carbohydrate Research, 1996, 290, 59-65.	2.3	52
120	Structural analysis of the lipopolysaccharide from Vibrio cholerae O139. Carbohydrate Research, 1996, 290, 43-58.	2.3	55
121	Structures of the two Polymers Present in the Lipopolysaccharide of Burkholderia (Pseudomonas) Cepacia Serogroup O4. FEBS Journal, 1995, 231, 784-789.	0.2	15
122	Characterization of a lipopolysaccharide O antigen containing two different trisaccharide repeating units from Burkholderia cepacia serotype E (O2). Carbohydrate Research, 1995, 272, 231-239.	2.3	18
123	Structure of the putative O antigen containing 2-amino-2-deoxy-l-glucose in the reference strain for Pseudomonas cepacia serogroup O1. Carbohydrate Research, 1990, 195, 295-301.	2.3	22
124	Structure of the O-specific polymer for Pseudomonas cepacia serogroup O7. Carbohydrate Research, 1990, 198, 153-156.	2.3	12
125	Structures of the 0-specific polymers from the LIPOPOLYSACCHARIDES OF THE REFERENCE STRAINS FOR Pseudomonas cepacia SEROGROUPS 03 AND 05. Carbohydrate Research, 1989, 195, 123-129.	2.3	21
126	Polar lipids and fatty acids of Pseudomonas cepacia. Lipids and Lipid Metabolism, 1989, 1001, 60-67.	2.6	34