
Susan E Ebeler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6412500/publications.pdf Version: 2024-02-01

SUSAN F FREIED

#	Article	lF	CITATIONS
1	Associations among Wine Grape Microbiome, Metabolome, and Fermentation Behavior Suggest Microbial Contribution to Regional Wine Characteristics. MBio, 2016, 7, .	4.1	325
2	Origins of Grape and Wine Aroma. Part 1. Chemical Components and Viticultural Impacts. American Journal of Enology and Viticulture, 2014, 65, 1-24.	1.7	238
3	The present and future of the international wine industry. Nature, 2002, 418, 696-699.	27.8	228
4	Processing Effects on Lycopene Content and Antioxidant Activity of Tomatoes. Journal of Agricultural and Food Chemistry, 2001, 49, 3713-3717.	5.2	218
5	Marine plastic debris emits a keystone infochemical for olfactory foraging seabirds. Science Advances, 2016, 2, e1600395.	10.3	204
6	ANALYTICAL CHEMISTRY: UNLOCKING THE SECRETS OF WINE FLAVOR. Food Reviews International, 2001, 17, 45-64.	8.4	191
7	Wine flavor: chemistry in a glass. Chemical Society Reviews, 2008, 37, 2478.	38.1	184
8	Postharvest life and flavor quality of three strawberry cultivars kept at 5°C in air or air+20 kPa CO2. Postharvest Biology and Technology, 2003, 27, 171-183.	6.0	180
9	Interactions between Wine Volatile Compounds and Grape and Wine Matrix Components Influence Aroma Compound Headspace Partitioning. Journal of Agricultural and Food Chemistry, 2009, 57, 10313-10322.	5.2	162
10	HS-SPME GC/MS characterization of volatiles in raw and dry-roasted almonds (Prunus dulcis). Food Chemistry, 2014, 151, 31-39.	8.2	139
11	Wine Chemistry and Flavor: Looking into the Crystal Glass. Journal of Agricultural and Food Chemistry, 2009, 57, 8098-8108.	5.2	136
12	Glycosidically Bound Volatile Aroma Compounds in Grapes and Wine: A Review. American Journal of Enology and Viticulture, 2015, 66, 1-11.	1.7	124
13	Sensory attributes of Cabernet Sauvignon wines made from vines with different water status. Australian Journal of Grape and Wine Research, 2005, 11, 339-347.	2.1	123
14	Multiresidue Pesticide Analysis in Wines by Solid-Phase Extraction and Capillary Gas Chromatographyâ	5.2	122
15	Headspace solid-phase microextraction–gas chromatography–mass spectrometry for profiling free volatile compounds in Cabernet Sauvignon grapes and wines. Journal of Chromatography A, 2009, 1216, 3012-3022.	3.7	122
16	Comparative analysis of topoisomerase IB inhibition and DNA intercalation by flavonoids and similar compounds: structural determinates of activity. Biochemical Journal, 2004, 384, 527-541.	3.7	119
17	Analysis of 2,4,6-trichloroanisole in wines using solid-phase microextraction coupled to gas chromatography-mass spectrometry. Journal of Chromatography A, 1997, 786, 293-298.	3.7	107
18	Characterization and quantification of odorous and non-odorous volatile organic compounds near a commercial dairy in California. Atmospheric Environment, 2003, 37, 933-940.	4.1	107

#	Article	IF	CITATIONS
19	Quantitative analysis by gas chromatography of volatile carbonyl compounds in expired air from mice and human. Biomedical Applications, 1997, 702, 211-215.	1.7	106
20	Study of Interactions between Food Phenolics and Aromatic Flavors Using One- and Two-Dimensional1H NMR Spectroscopy. Journal of Agricultural and Food Chemistry, 2000, 48, 407-412.	5.2	101
21	Use of multivariate statistics in understanding wine flavor. Food Reviews International, 2002, 18, 1-20.	8.4	99
22	Yield Effects on 2-Methoxy-3-Isobutylpyrazine Concentration in Cabernet Sauvignon Using a Solid Phase Microextraction Gas Chromatography/Mass Spectrometry Method. Journal of Agricultural and Food Chemistry, 2004, 52, 5431-5435.	5.2	95
23	Effect of Dietary Constituents With Chemopreventive Potential on Adduct Formation of a Low Dose of the Heterocyclic Amines PhIP and IQ and Phase II Hepatic Enzymes. Nutrition and Cancer, 2003, 46, 212-221.	2.0	92
24	Red blotch disease alters grape berry development and metabolism by interfering with the transcriptional and hormonal regulation of ripening. Journal of Experimental Botany, 2017, 68, 1225-1238.	4.8	92
25	Headspace Solid-Phase Microextraction Method for the Study of the Volatility of Selected Flavor Compounds. Journal of Agricultural and Food Chemistry, 2003, 51, 200-205.	5.2	91
26	Analysis of brandy aroma by solid-phase microextraction and liquid-liquid extraction. Journal of the Science of Food and Agriculture, 2000, 80, 625-630.	3.5	89
27	The combined impact of vineyard origin and processing winery on the elemental profile of red wines. Food Chemistry, 2015, 172, 486-496.	8.2	88
28	Developmental and metabolic plasticity of white-skinned grape berries in response to Botrytis cinerea during noble rot. Plant Physiology, 2015, 169, pp.00852.2015.	4.8	84
29	Supercritical Fluid Extraction of 2,4,6-Trichloroanisole from Cork Stoppers. Journal of Agricultural and Food Chemistry, 2000, 48, 2208-2211.	5.2	81
30	Monitoring Ester Formation in Grape Juice Fermentations Using Solid Phase Microextraction Coupled with Gas Chromatographyâ^'Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2001, 49, 589-595.	5.2	79
31	Quercetin inhibits hydrogen peroxide-induced DNA damage and enhances DNA repair in Caco-2 cells. Food and Chemical Toxicology, 2009, 47, 2716-2722.	3.6	71
32	PERCEPTION OF FRUITY AND VEGETATIVE AROMAS IN RED WINE. Journal of Sensory Studies, 2009, 24, 441-455.	1.6	70
33	An integrated approach for flavour quality evaluation in muskmelon (Cucumis melo L. reticulatus) Tj ETQq1 1	0.784314 rg	gBT40verlock
34	CULTIVAR AND HARVEST DATE EFFECTS ON FLAVOR AND OTHER QUALITY ATTRIBUTES OF CALIFORNIA STRAWBERRIES. Journal of Food Quality, 2005, 28, 78-97.	2.6	62
35	2-Methoxy-3-isobutylpyrazine in grape berries and its dependence on genotype. Phytochemistry, 2010, 71, 2190-2198.	2.9	62
36	Upgrading of Lignin-Derived Compounds: Reactions of Eugenol Catalyzed by HY Zeolite and by Pt/I³-Al2O3. Catalysis Letters, 2012, 142, 151-160.	2.6	62

#	Article	IF	CITATIONS
37	Analysis of selected carbonyl oxidation products in wine by liquid chromatography with diode array detection. Analytica Chimica Acta, 2008, 626, 104-110.	5.4	61
38	Regional sensory and chemical characteristics of Malbec wines from Mendoza and California. Food Chemistry, 2014, 143, 256-267.	8.2	61
39	The Combined Effects of Storage Temperature and Packaging Type on the Sensory and Chemical Properties of Chardonnay. Journal of Agricultural and Food Chemistry, 2012, 60, 10743-10754.	5.2	57
40	Headspace Solid-Phase Microextraction for the Analysis of Dimethyl Sulfide in Beer. Journal of Agricultural and Food Chemistry, 1999, 47, 2505-2508.	5.2	56
41	Sulfur volatiles of microbial origin are key contributors to human-sensed truffle aroma. Applied Microbiology and Biotechnology, 2015, 99, 2583-2592.	3.6	55
42	Flavonoid effects on DNA oxidation at low concentrations relevant to physiological levels. Food and Chemical Toxicology, 2008, 46, 96-104.	3.6	52
43	Influence of Storage on Volatile Profiles in Roasted Almonds (<i>Prunus dulcis</i>). Journal of Agricultural and Food Chemistry, 2014, 62, 11236-11245.	5.2	51
44	Characterizing the Chemical and Sensory Profiles of United States Cabernet Sauvignon Wines and Blends. American Journal of Enology and Viticulture, 2013, 64, 169-179.	1.7	48
45	Multiresidue Pesticide Analysis of Wines by Dispersive Solid-Phase Extraction and Ultrahigh-Performance Liquid Chromatographyâ^'Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2009, 57, 4019-4029.	5.2	47
46	Fruit ripening in <i>Vitis vinifera</i> : light intensity before and not during ripening determines the concentration of 2â€methoxyâ€3â€isobutylpyrazine in Cabernet Sauvignon berries. Physiologia Plantarum, 2012, 145, 275-285.	5.2	47
47	Profiling monoterpenol glycoconjugation in Vitis vinifera L. cv. Muscat of Alexandria using a novel putative compound database approach, high resolution mass spectrometry and collision induced dissociation fragmentation analysis. Analytica Chimica Acta, 2015, 887, 138-147.	5.4	47
48	Origins of Grape and Wine Aroma. Part 2. Chemical and Sensory Analysis. American Journal of Enology and Viticulture, 2014, 65, 25-42.	1.7	46
49	Linking Flavor Chemistry to Sensory Analysis of Wine. , 1999, , 409-421.		46
50	Influence of dispersion medium on aroma intensity and headspace concentration of menthone and isoamyl acetate. Journal of Agricultural and Food Chemistry, 1988, 36, 791-796.	5.2	43
51	The Combined Effects of Storage Temperature and Packaging on the Sensory, Chemical, and Physical Properties of a Cabernet Sauvignon Wine. Journal of Agricultural and Food Chemistry, 2013, 61, 3320-3334.	5.2	43
52	Multiresidue Determination of Pesticides in Malt Beverages by Capillary Gas Chromatography with Mass Spectrometry and Selected Ion Monitoring. Journal of Agricultural and Food Chemistry, 2004, 52, 6361-6372.	5.2	42
53	A gel electrophoresis assay for the simultaneous determination of topoisomerase I inhibition and DNA intercalation. Analytical Biochemistry, 2003, 321, 22-30.	2.4	40
54	UHPLC-(ESI)QTOF MS/MS Profiling of Quercetin Metabolites in Human Plasma Postconsumption of Applesauce Enriched with Apple Peel and Onion. Journal of Agricultural and Food Chemistry, 2012, 60, 8510-8520.	5.2	39

#	Article	IF	CITATIONS
55	Profiling of nonvolatiles in whiskeys using ultra high pressure liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC–QTOF MS). Food Chemistry, 2014, 163, 186-196.	8.2	39
56	Optimized Procedures for Analyzing Primary Alkylamines in Wines by Pentafluorobenzaldehyde Derivatization and GCâ^'MS. Journal of Agricultural and Food Chemistry, 2000, 48, 3311-3316.	5.2	37
57	The Application of Thermal Desorption GC/MS with Simultaneous Olfactory Evaluation for the Characterization and Quantification of Odor Compounds from a Dairy. Journal of Agricultural and Food Chemistry, 2002, 50, 5139-5145.	5.2	37
58	Effect of ethylene and temperature conditioning on sensory attributes and chemical composition of â€~Bartlett' pears. Postharvest Biology and Technology, 2014, 97, 44-61.	6.0	37
59	Correlating Wine Quality Indicators to Chemical and Sensory Measurements. Molecules, 2015, 20, 8453-8483.	3.8	37
60	Dietary catechin delays tumor onset in a transgenic mouse model. American Journal of Clinical Nutrition, 2002, 76, 865-872.	4.7	35
61	Superficial Scald and Bitter Pit Development in Cold-Stored Transgenic Apples Suppressed for Ethylene Biosynthesis. Journal of Agricultural and Food Chemistry, 2009, 57, 2786-2792.	5.2	34
62	Application of Pulsed Field Gradient NMR Techniques for Investigating Binding of Flavor Compounds to Macromolecules. Journal of Agricultural and Food Chemistry, 2002, 50, 4262-4269.	5.2	32
63	Short anaerobiosis period prior to cold storage alleviates bitter pit and superficial scald in Granny Smith apples. Journal of the Science of Food and Agriculture, 2010, 90, n/a-n/a.	3.5	31
64	How Blending Affects the Sensory and Chemical Properties of Red Wine. American Journal of Enology and Viticulture, 2012, 63, 313-324.	1.7	31
65	Changes in glycosylation patterns of monoterpenes during grape berry maturation in six cultivars of Vitis vinifera. Food Chemistry, 2019, 297, 124921.	8.2	31
66	Direct hydrolysis and analysis of glycosidically bound aroma compounds in grapes and wines: comparison of hydrolysis conditions and sample preparation methods. Australian Journal of Grape and Wine Research, 2014, 20, 361-377.	2.1	30
67	Dynamic Changes in Volatile Compounds during Fermentation of Cabernet Sauvignon Grapes with and without Skins. American Journal of Enology and Viticulture, 2012, 63, 301-312.	1.7	29
68	HS-SPME-GC-MS/MS Method for the Rapid and Sensitive Quantitation of 2-Acetyl-1-pyrroline in Single Rice Kernels. Journal of Agricultural and Food Chemistry, 2016, 64, 4114-4120.	5.2	28
69	Analysis of temporal dominance of sensation data using correspondence analysis on Merlot wine with differing maceration and cap management regimes. Food Quality and Preference, 2018, 64, 245-252.	4.6	28
70	Cytokinin but not gibberellin application had major impact on the phenylpropanoid pathway in grape. Horticulture Research, 2021, 8, 51.	6.3	28
71	TIME-INTENSITY MEASUREMENT OF MATRIX EFFECTS ON RETRONASAL AROMA PERCEPTION. Journal of Sensory Studies, 1997, 12, 303-316.	1.6	27
72	A comparison of sorptive extraction techniques coupled to a new quantitative, sensitive, high throughput GC–MS/MS method for methoxypyrazine analysis in wine. Talanta, 2016, 148, 336-345.	5.5	27

#	Article	IF	CITATIONS
73	Solid-Phase Microextraction for the Enantiomeric Analysis of Flavors in Beverages. Journal of AOAC INTERNATIONAL, 2001, 84, 479-485.	1.5	26
74	Profiling the trace metal composition of wine as a function of storage temperature and packaging type. Journal of Analytical Atomic Spectrometry, 2013, 28, 1288.	3.0	26
75	Changes in Smoke-Taint Volatile-Phenol Glycosides in Wildfire Smoke-Exposed Cabernet Sauvignon Grapes throughout Winemaking. American Journal of Enology and Viticulture, 2019, 70, 373-381.	1.7	26
76	Analysis of Malondialdehyde in Biological Samples by Capillary Gas Chromatography. Analytical Biochemistry, 1994, 220, 73-81.	2.4	24
77	Headspace sorptive extraction-gas chromatography–mass spectrometry method to measure volatile emissions from human airway cell cultures. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1090, 36-42.	2.3	24
78	Direct Analysis of Glycosidic Aroma Precursors Containing Multiple Aglycone Classes in <i>Vitis vinifera</i> Berries. Journal of Agricultural and Food Chemistry, 2020, 68, 3817-3833.	5.2	23
79	Detection of Cork Taint in Wine Using Automated Solid-Phase MicroExtraction in Combination with GC/MS-SIM. ACS Symposium Series, 1998, , 208-216.	0.5	22
80	ANTHOCYANIN INTERACTIONS WITH DNA: INTERCALATION, TOPOISOMERASE I INHIBITION AND OXIDATIVE REACTIONS. Journal of Food Biochemistry, 2008, 32, 576-596.	2.9	22
81	Perceptual Characterization and Analysis of Aroma Mixtures Using Gas Chromatography Recomposition-Olfactometry. PLoS ONE, 2012, 7, e42693.	2.5	22
82	Investigation of Binding Behavior of α- and β-Ionones to β-Lactoglobulin at Different pH Values Using a Diffusion-Based NOE Pumping Technique. Journal of Agricultural and Food Chemistry, 2003, 51, 1988-1993.	5.2	21
83	Volatile and sensory profiling of cocktail bitters. Food Chemistry, 2015, 179, 343-354.	8.2	20
84	Girdling of table grapes at fruit set can divert the phenylpropanoid pathway towards accumulation of proanthocyanidins and change the volatile composition. Plant Science, 2020, 296, 110495.	3.6	20
85	The Measurement of Sulfur-Containing Aroma Compounds in Samples from Production-Scale Brewery Operations. Journal of the American Society of Brewing Chemists, 2005, 63, 129-134.	1.1	19
86	High-Throughput, Sub ng/L Analysis of Haloanisoles in Wines Using HS-SPME with GC-Triple Quadrupole MS. American Journal of Enology and Viticulture, 2012, 63, 494-499.	1.7	19
87	Effects of gibberellin and cytokinin on phenolic and volatile composition of Sangiovese grapes. Scientia Horticulturae, 2022, 295, 110860.	3.6	19
88	Analysis of reactive carbonyls in the expired air of transgenic mice. Analytical Biochemistry, 1992, 205, 183-186.	2.4	18
89	The Use of Macro, Micro, and Trace Elemental Profiles to Differentiate Commercial Single Vineyard Pinot noir Wines at a Sub-Regional Level. Molecules, 2020, 25, 2552.	3.8	18
90	Equilibration Time and Glass Shape Effects on Chemical and Sensory Properties of Wine. American Journal of Enology and Viticulture, 2012, 63, 515-521.	1.7	17

#	Article	IF	CITATIONS
91	Chemical Characteristics of Sangiovese Wines from California and Italy of 2016 Vintage. Journal of Agricultural and Food Chemistry, 2019, 67, 2647-2659.	5.2	16
92	Targeted volatile composition of oak wood samples taken during toasting at a commercial cooperage. Tetrahedron, 2015, 71, 2971-2982.	1.9	15
93	Comparison of Dilution, Filtration, and Microwave Digestion Sample Pretreatments in Elemental Profiling of Wine by ICP-MS. Molecules, 2017, 22, 1609.	3.8	15
94	Beef stock reduction with red wine – Effects of preparation method and wine characteristics. Food Chemistry, 2011, 126, 183-196.	8.2	14
95	Evaluation of Variety, Maturity, and Farm on the Concentrations of Monoterpene Diglycosides and Hop Volatile/Nonvolatile Composition in Five <i>Humulus lupulus</i> Cultivars. Journal of Agricultural and Food Chemistry, 2021, 69, 4356-4370.	5.2	14
96	Characterization of Red Wine Proanthocyanidins Using a Putative Proanthocyanidin Database, Amide Hydrophilic Interaction Liquid Chromatography (HILIC), and Time-of-Flight Mass Spectrometry. Molecules, 2018, 23, 2687.	3.8	13
97	GC-Recomposition-Olfactometry (GC-R) and multivariate study of three terpenoid compounds in the aroma profile of Angostura bitters. Scientific Reports, 2019, 9, 7633.	3.3	13
98	Olive Fruit Fly, Bactrocera oleae (Diptera: Tephritidae), Attraction to Volatile Compounds Produced by Host and Insect-Associated Yeast Strains. Journal of Economic Entomology, 2020, 113, 752-759.	1.8	13
99	Characterization and Measurement of Aldehydes in Wine. ACS Symposium Series, 1998, , 166-179.	0.5	12
100	Effect of Ethylene and Temperature Conditioning on Sensory Attributes and Chemical Composition of ‰Comice' Pears. Journal of Agricultural and Food Chemistry, 2014, 62, 4988-5004.	5.2	12
101	Monitoring selected monomeric polyphenol composition in pre- and post-fermentation products of Vitis vinifera L. cv. Airén and cv. Grenache noir. LWT - Food Science and Technology, 2015, 60, 552-562.	5.2	12
102	The Occurrence of Glycosylated Aroma Precursors in Vitis vinifera Fruit and Humulus lupulus Hop Cones and Their Roles in Wine and Beer Volatile Aroma Production. Foods, 2021, 10, 935.	4.3	12
103	Measuring gas-liquid partition coefficients of aroma compounds by solid phase microextraction, sampling either headspace or liquid. Analyst, The, 2011, 136, 3375.	3.5	11
104	Current Perspective on Arsenic in Wines: Analysis, Speciation, and Changes in Composition during Production. Journal of Agricultural and Food Chemistry, 2019, 67, 4154-4159.	5.2	10
105	The potentiating and protective effects of ascorbate on oxidative stress depend upon the concentration of dietary iron fed C3H mice. Journal of Nutritional Biochemistry, 2007, 18, 272-278.	4.2	9
106	Analysis of Haloanisoles in Corks and Wines. ACS Symposium Series, 2012, , 109-127.	0.5	9
107	Extended Maceration and Cap Management Impacts on the Phenolic, Volatile, and Sensory Profiles of Merlot Wine. American Journal of Enology and Viticulture, 2018, 69, 360-370.	1.7	9
108	Characterization of Humulus lupulus glycosides with porous graphitic carbon and sequential high performance liquid chromatography quadrupole time-of-flight mass spectrometry and high performance liquid chromatography fractionation. Journal of Chromatography A, 2022, 1674, 463130.	3.7	9

#	Article	IF	CITATIONS
109	Measuring Local Equilibrium Flavor Distributions in SDS Solution Using Headspace Solid-Phase Microextraction. Journal of Physical Chemistry B, 2011, 115, 14484-14492.	2.6	8
110	Evaluation of the Intrinsic and Perceived Quality of Sangiovese Wines from California and Italy. Foods, 2020, 9, 1088.	4.3	8
111	Volatile carbonyl levels in tissues of transgenic mice with nerve sheath tumors. Biomedical Applications, 1994, 654, 9-18.	1.7	7
112	Matrix Extension and Multilaboratory Validation of Arsenic Speciation Method EAM §4.10 to Include Wine. Journal of Agricultural and Food Chemistry, 2017, 65, 4193-4199.	5.2	7
113	Elemental Profiles of Whisk(e)y Allow Differentiation by Type and Region. Beverages, 2017, 3, 8.	2.8	7
114	Individual Chemical Profiles in the Leach's Storm-Petrel. Journal of Chemical Ecology, 2020, 46, 845-864.	1.8	7
115	Fruit Volatile Analysis Using an Electronic Nose. Journal of Visualized Experiments, 2012, , .	0.3	6
116	Low oxygen pre-storage treatment is effective in reducing chilling injuries of deciduous fruit. International Journal of Postharvest Technology and Innovation, 2014, 4, 23.	0.1	6
117	Aroma Perception and Chemistry of Bitters in Whiskey Matrices: Modeling the Old-Fashioned. Chemosensory Perception, 2017, 10, 135-148.	1.2	6
118	Unraveling the Regional Specificities of Malbec Wines from Mendoza, Argentina, and from Northern California. Agronomy, 2019, 9, 234.	3.0	6
119	Progress in Authentication of Food and Wine. ACS Symposium Series, 2011, , 3-11.	0.5	5
120	Gas Chromatographic Analysis of Wines. , 2012, , 689-710.		5
121	Analysis of Grapes and Wines: An Overview of New Approaches and Analytical Tools. ACS Symposium Series, 2015, , 3-12.	0.5	5
122	Catalytic Conversion of Biofuel Components: Product Analysis by Multidetector Gas Chromatography. Energy & Fuels, 2015, 29, 1801-1811.	5.1	4
123	Volatile organic compound (VOC) emissions of CHO and T cells correlate to their expansion in bioreactors. Journal of Breath Research, 2020, 14, 016002.	3.0	4
124	Partitioning, solubility and solubilization of limonene into water or <scp>short hain</scp> phosphatidylcholine solutions. JAOCS, Journal of the American Oil Chemists' Society, 2021, 98, 979-992.	1.9	4
125	An In Vivo Experimental Protocol for Identifying and Evaluating Dietary Factors That Delay Tumor Onset. ACS Symposium Series, 1997, , 215-229.	0.5	3

#	Article	IF	CITATIONS
127	Extraction and Analysis of Phenolic Compounds from Grape Berries. Methods in Molecular Biology, 2022, 2469, 1-17.	0.9	3
128	Feather chemicals contain information about the major histocompatibility complex in a highly scented seabird. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	2.6	3
129	Gas Chromatographic Analysis of Chiral Aroma Compounds in Wine Using Modified Cyclodextrin Stationary Phases and Solid Phase Microextraction. ACS Symposium Series, 2001, , 45-56.	0.5	2
130	Phytochemicals and Wine Flavor. , 1997, , 155-178.		2
131	DNA Intercalation, Topoisomerase I Inhibition, and Oxidative Reactions of Polyphenols. ACS Symposium Series, 2008, , 320-334.	0.5	1
132	Carotenoid Cleavage Products: An Introduction. ACS Symposium Series, 2013, , 3-9.	0.5	1
133	Characterization of Free and Bound Monoterpene Alcohols during Riesling Fermentation. Journal of Agricultural and Food Chemistry, 2021, 69, 13286-13298.	5.2	1
134	C ₁₃ -Norisoprenoid Concentrations in Grapes as Affected by Sunlight and Shading. ACS Symposium Series, 2008, , 68-77.	0.5	0
135	Gas chromatographic analysis of wine. , 2021, , 807-833.		0
136	Moving Chemistry from Bench to Market: An Introduction to the Agricultural and Food Chemistry Technical Program at the 260th American Chemical Society Fall 2020 Virtual Meeting & Expo. Journal of Agricultural and Food Chemistry, 2021, 69, 13255-13259.	5.2	0