Muyinatu Bell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6412397/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimization of a dual wavelength atlas technique to differentiate methylene blue from hemoglobin in photoacoustic signals. , 2022, , .		1
2	Design and optimization of simulated light delivery systems for photoacoustic assessment of peripheral nerve injury. , 2022, , .		2
3	Theoretical Framework to Predict Generalized Contrast-to-Noise Ratios of Photoacoustic Images With Applications to Computer Vision. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 2098-2114.	3.0	10
4	A Review of Deep Learning Applications in Lung Ultrasound Imaging of COVID-19 Patients. BME Frontiers, 2022, 2022, .	4.5	22
5	Laser Safety for Photoacoustic-Guided Surgery. , 2022, , .		0
6	Photoacoustic-Guided Laparoscopic and Open Hysterectomy Procedures Demonstrated With Human Cadavers. IEEE Transactions on Medical Imaging, 2021, 40, 3279-3292.	8.9	14
7	Spatial Coherence Beamforming With Multi-Line Transmission to Enhance the Contrast of Coherent Structures in Ultrasound Images Degraded by Acoustic Clutter. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 3570-3582.	3.0	8
8	Deep Learning for Ultrasound Image Formation: CUBDL Evaluation Framework and Open Datasets. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 3466-3483.	3.0	45
9	Deep Learning for Ultrasound Beamforming in Flexible Array Transducer. IEEE Transactions on Medical Imaging, 2021, 40, 3178-3189.	8.9	35
10	Fund Black scientists. Cell, 2021, 184, 561-565.	28.9	107
11	Empirical assessment of laser safety for photoacoustic-guided liver surgeries. Biomedical Optics Express, 2021, 12, 1205.	2.9	14
12	Investigating the effects of compressional and elastic photoacoustic waves to predict transcranial photoacoustic image quality for guidance of minimally invasive neurosurgeries. , 2021, , .		0
13	Photoacoustic vision for surgical guidance. , 2021, , .		0
14	Validation of eyelids as acoustic receiver locations for photoacoustic-guided neurosurgery. , 2021, , .		1
15	Generalized contrast-to-noise ratio as a metric of photoacoustic image quality. , 2021, , .		3
16	Parking sensor-inspired approach to photoacoustic-guided hysterectomy demonstrated with human cadavers. , 2021, , .		1
17	Photoacoustic-guided surgery from head to toe [Invited]. Biomedical Optics Express, 2021, 12, 2079.	2.9	38
18	Deep Learning in Biomedical Optics. Lasers in Surgery and Medicine, 2021, 53, 748-775.	2.1	32

#	Article	IF	CITATIONS
19	Spectral Gap Extrapolation and Radio Frequency Interference Suppression Using 1D UNets. , 2021, , .		4
20	Translational Photoacoustic Imaging for Disease Diagnosis, Monitoring, and Surgical Guidance: introduction to the feature issue. Biomedical Optics Express, 2021, 12, 4115.	2.9	6
21	Comparison of compressional and elastic wave simulations for patient-specific planning prior to transcranial photoacoustic-guided neurosurgery. Journal of Biomedical Optics, 2021, 26, .	2.6	2
22	Combined Ultrasound and Photoacoustic Image Guidance of Spinal Pedicle Cannulation Demonstrated With Intact <i>ex vivo</i> Specimens. IEEE Transactions on Biomedical Engineering, 2021, 68, 2479-2489.	4.2	24
23	Deep Learning-Based Photoacoustic Visual Servoing: Using Outputs from Raw Sensor Data as Inputs to a Robot Controller. , 2021, , .		7
24	Acoustic Frequency-Based Approach for Identification of Photoacoustic Surgical Biomarkers. Frontiers in Photonics, 2021, 2, .	2.4	9
25	The Feasibility of Haar Feature-Based Endoscopic Ultrasound Probe Tracking for Implanting Hydrogel Spacer in Radiation Therapy for Pancreatic Cancer. Frontiers in Oncology, 2021, 11, 759811.	2.8	8
26	A method to estimate the spatial coherence of photoacoustic channel data without access to channel data. , 2021, , .		1
27	Quantifying the impact of breast density on the lag-one coherence of hypoechoic masses. , 2021, , .		1
28	A beamformer-independent method to predict photoacoustic visual servoing system failure from a single image frame. , 2021, , .		2
29	Extending CohereNet to Retain Physical Features when Classifying Benign or Malignant Breast Masses. , 2021, , .		Ο
30	<i>In Vivo</i> Demonstration of Photoacoustic Image Guidance and Robotic Visual Servoing for Cardiac Catheter-Based Interventions. IEEE Transactions on Medical Imaging, 2020, 39, 1015-1029.	8.9	50
31	The Generalized Contrast-to-Noise Ratio: A Formal Definition for Lesion Detectability. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 745-759.	3.0	226
32	Photoacoustic Spatial Coherence Theory and Applications to Coherence-Based Image Contrast and Resolution. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 2069-2084.	3.0	24
33	Photoacoustic imaging for surgical guidance: Principles, applications, and outlook. Journal of Applied Physics, 2020, 128, 060904.	2.5	61
34	Beamforming with deep learning from single plane wave RF data. , 2020, , .		13
35	Deep Learning in Medical Ultrasound—From Image Formation to Image Analysis. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 2477-2480.	3.0	9
36	Deep Learning to Obtain Simultaneous Image and Segmentation Outputs From a Single Input of Raw Ultrasound Channel Data. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 2493-2509.	3.0	68

#	Article	IF	CITATIONS
37	Simulations and human cadaver head studies to identify optimal acoustic receiver locations for minimally invasive photoacoustic-guided neurosurgery. Photoacoustics, 2020, 19, 100183.	7.8	31
38	CohereNet: A Deep Learning Architecture for Ultrasound Spatial Correlation Estimation and Coherence-Based Beamforming. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 2574-2583.	3.0	37
39	Coherence-Based Beamforming Increases the Diagnostic Certainty of Distinguishing Fluid from Solid Masses in Breast Ultrasound Exams. Ultrasound in Medicine and Biology, 2020, 46, 1380-1394.	1.5	18
40	Challenge on Ultrasound Beamforming with Deep Learning (CUBDL). , 2020, , .		14
41	GPU implementation of photoacoustic short-lag spatial coherence imaging for improved image-guided interventions. Journal of Biomedical Optics, 2020, 25, 1.	2.6	29
42	Dual-wavelength photoacoustic imaging for guidance of hysterectomy procedures. , 2020, , .		11
43	A GPU approach to real-time coherence-based photoacoustic imaging and its application to photoacoustic visual servoing. , 2020, , .		4
44	Application of the generalized contrast-to-noise ratio to assess photoacoustic image quality. Biomedical Optics Express, 2020, 11, 3684.	2.9	58
45	Listening to the Sound of Light to Guide Surgeries. , 2020, , .		0
46	Photoacoustic image guidance and robotic visual servoing to mitigate fluoroscopy during cardiac catheter interventions. , 2020, , .		8
47	Multi-task learning for ultrasound image formation and segmentation directly from raw in vivo data. , 2020, , .		7
48	Coherence-based beamforming improves the diagnostic certainty of breast ultrasound exams. , 2020, , .		7
49	Theoretical predictions of the generalized contrast-to-noise ratio for photoacoustic images. , 2020, , .		3
50	Investigation of acoustic windows for photoacoustic imaging of intracranial blood vessels. , 2020, , .		1
51	A Conditional Adversarial Network for Single Plane Wave Beamforming. , 2020, , .		15
52	Acoustic frequency-based differentiation of photoacoustic signals from surgical biomarkers. , 2020, ,		4
53	Photoacoustic Vision for Surgical Guidance. , 2020, , .		2
54	Improving the Detectability of Highly Coherent Targets in Short-Lag Spatial Coherence Images with		3

Improving the Detectability of Highly Multi-Line Transmission. , 2020, , .

#	Article	IF	CITATIONS
55	2D ultrasound imaging based intra-fraction respiratory motion tracking for abdominal radiation therapy using machine learning. Physics in Medicine and Biology, 2019, 64, 185006.	3.0	18
56	Deep learning to detect catheter tips in vivo during photoacoustic-guided catheter interventions : Invited Presentation. , 2019, , .		4
57	A Generative Adversarial Neural Network for Beamforming Ultrasound Images : Invited Presentation. , 2019, , .		34
58	Robust Short-Lag Spatial Coherence Imaging of Breast Ultrasound Data: Initial Clinical Results. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 527-540.	3.0	29
59	One-Step Deep Learning Approach to Ultrasound Image Formation and Image Segmentation with a Fully Convolutional Neural Network. , 2019, , .		8
60	CohereNet: A deep learning approach to coherence-based beamforming. , 2019, , .		6
61	GPU implementation of coherence-based photoacoustic beamforming for autonomous visual servoing. , 2019, , .		5
62	In vivo photoacoustic imaging of major blood vessels in the pancreas and liver during surgery. Journal of Biomedical Optics, 2019, 24, 1.	2.6	31
63	In vivo demonstration of photoacoustic-guided liver surgery. , 2019, , .		2
64	Techniques to distinguish the ureter from the uterine artery in photoacoustic-guided hysterectomies. , 2019, , .		8
65	A deep learning-based approach to identify in vivo catheter tips during photoacoustic-guided cardiac interventions. , 2019, , .		12
66	Visualization of custom drill bit tips in a human vertebra for photoacoustic-guided spinal fusion surgeries. , 2019, , .		4
67	Simultaneous visualization of nerves and blood vessels with multispectral photoacoustic imaging for intraoperative guidance of neurosurgeries. , 2019, , .		4
68	Deep learning the sound of light to guide surgeries. , 2019, , .		5
69	Robust Short-Lag Spatial Coherence Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 366-377.	3.0	29
70	Photoacoustic Source Detection and Reflection Artifact Removal Enabled by Deep Learning. IEEE Transactions on Medical Imaging, 2018, 37, 1464-1477.	8.9	163
71	Segmenting Bone Structures in Ultrasound Images with Locally Weighted SLSC (LW-SLSC)Beamforming. , 2018, , .		7
72	Deep Neural Networks to Remove Photoacoustic Reflection Artifacts in Ex Vivo and in Vivo Tissue. , 2018, , .		10

#	Article	IF	CITATIONS
73	A Fully Convolutional Neural Network for Beamforming Ultrasound Images. , 2018, , .		20
74	RECONSTRUCTION-FREE DEEP CONVOLUTIONAL NEURAL NETWORKS FOR PARTIALLY OBSERVED IMAGES. , 2018, , .		4
75	Clinical Feasibility of Coherence-Based Beamforming to Distinguish Solid from Fluid Hypoechoic Breast Masses. , 2018, , .		9
76	A Deep Learning Based Alternative to Beamforming Ultrasound Images. , 2018, , .		53
77	Photoacoustic-based visual servoing of a needle tip. Scientific Reports, 2018, 8, 15519.	3.3	49
78	Evaluation of 2D and 3D ultrasound tracking algorithms and impact on ultrasoundâ€guided liver radiotherapy margins. Medical Physics, 2018, 45, 4986-5003.	3.0	43
79	Photoacoustic imaging of a human vertebra: implications for guiding spinal fusion surgeries. Physics in Medicine and Biology, 2018, 63, 144001.	3.0	47
80	Feasibility of photoacoustic-guided teleoperated hysterectomies. Journal of Medical Imaging, 2018, 5, 1.	1.5	35
81	A novel drill design for photoacoustic guided surgeries. , 2018, , .		11
82	Additive noise models for photoacoustic spatial coherence theory. Biomedical Optics Express, 2018, 9, 5566.	2.9	13
83	Development and validation of a short-lag spatial coherence theory for photoacoustic imaging. , 2018, , .		2
84	Exploring the effects of transducer models when training convolutional neural networks to eliminate reflection artifacts in experimental photoacoustic images. , 2018, , .		4
85	Technical note: feasibility of photoacoustic guided hysterectomies with the da Vinci robot. , 2018, , .		2
86	Design of a multifiber light delivery system for photoacoustic-guided surgery. Journal of Biomedical Optics, 2017, 22, 1.	2.6	54
87	Accuracy of a novel photoacoustic-based approach to surgical guidance performed with and without a da Vinci robot. , 2017, , .		4
88	Feasibility study of ultrasound imaging for stereotactic body radiation therapy with active breathing coordinator in pancreatic cancer. Journal of Applied Clinical Medical Physics, 2017, 18, 84-96.	1.9	21
89	Optimizing light delivery for a photoacoustic surgical system. , 2017, , .		0
90	System Integration and In Vivo Testing of a Robot for Ultrasound Guidance and Monitoring During Radiotherapy. IEEE Transactions on Biomedical Engineering, 2017, 64, 1608-1618.	4.2	28

#	Article	IF	CITATIONS
91	The UltraSound ToolBox. , 2017, , .		20
92	Feasibility of a photoacoustic image guided telerobotic system for skull base surgery. , 2017, , .		0
93	Notice of Removal: Photoacoustic visual servoing of needle tips to improve biopsy on obese patients. , 2017, , .		1
94	Improving the safety of telerobotic drilling of the skull base via photoacoustic sensing of the carotid arteries. , 2017, , .		9
95	A machine learning method to identify and remove reflection artifacts in photoacoustic channel data. , 2017, , .		24
96	Photoacoustic based visual servoing of needle tips to improve biopsy on obese patients. , 2017, , .		12
97	Theoretical application of short-lag spatial coherence to photoacoustic imaging. , 2017, , .		0
98	Notice of Removal: Identification and removal of reflection artifacts in photoacoustic images using convolutional neural networks. , 2017, , .		0
99	Photoacoustic-based approach to surgical guidance performed with and without a da Vinci robot. Journal of Biomedical Optics, 2017, 22, 1.	2.6	58
100	A machine learning approach to identifying point source locations in photoacoustic data. Proceedings of SPIE, 2017, , .	0.8	16
101	Synthetic-aperture based photoacoustic re-beamforming (SPARE) approach using beamformed ultrasound data. Biomedical Optics Express, 2016, 7, 3056.	2.9	23
102	Spatial Angular Compounding of Pub _newline ? Photoacoustic Images. IEEE Transactions on Medical Imaging, 2016, 35, 1845-1855.	8.9	12
103	Feasibility of photoacoustic image guidance for telerobotic endonasal transsphenoidal surgery. , 2016, , .		11
104	Experimental assessment of energy requirements and tool tip visibility for photoacoustic-guided endonasal surgery. , 2016, , .		5
105	Toward Standardized Acoustic Radiation Force (ARF)-Based Ultrasound Elasticity Measurements With Robotic Force Control. IEEE Transactions on Biomedical Engineering, 2016, 63, 1517-1524.	4.2	21
106	MO-FG-CAMPUS-JeP3-04: Feasibility Study of Real-Time Ultrasound Monitoring for Abdominal Stereotactic Body Radiation Therapy. Medical Physics, 2016, 43, 3727-3727.	3.0	3
107	Transurethral light delivery for prostate photoacoustic imaging. Journal of Biomedical Optics, 2015, 20, 036002.	2.6	59
108	Quantifying bone thickness, light transmission, and contrast interrelationships in transcranial photoacoustic imaging. Proceedings of SPIE, 2015, , .	0.8	5

#	Article	IF	CITATIONS
109	Photoacoustic image guidance for robot-assisted skull base surgery. , 2015, , .		12
110	System integration and preliminary in-vivo experiments of a robot for ultrasound guidance and monitoring during radiotherapy. , 2015, 2015, 53-59.		12
111	Resolution and brightness characteristics of short-lag spatial coherence (SLSC) images. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62, 1265-1276.	3.0	37
112	Localization of Transcranial Targets for Photoacoustic-Guided Endonasal Surgeries. Photoacoustics, 2015, 3, 78-87.	7.8	67
113	<i>In vivo</i> visualization of prostate brachytherapy seeds with photoacoustic imaging. Journal of Biomedical Optics, 2014, 19, 126011.	2.6	96
114	Photoacoustic imaging of prostate brachytherapy seeds with transurethral light delivery. Proceedings of SPIE, 2014, , .	0.8	2
115	In vivo reproducibility of robotic probe placement for a novel ultrasound-guided radiation therapy system. Journal of Medical Imaging, 2014, 1, 1.	1.5	36
116	Coherence-based photoacoustic imaging of brachytherapy seeds implanted in a canine prostate. Proceedings of SPIE, 2014, , .	0.8	8
117	In vivo photoacoustic imaging of prostate brachytherapy seeds. Proceedings of SPIE, 2014, , .	0.8	0
118	Improved contrast in laser-diode-based photoacoustic images with short-lag spatial coherence beamforming. , 2014, , .		22
119	Force-controlled ultrasound robot for consistent tissue pre-loading: Implications for acoustic radiation force elasticity imaging. , 2014, , .		5
120	Freehand spatial-angular compounding of photoacoustic images. , 2014, , .		0
121	Feasibility of transcranial photoacoustic imaging for interventional guidance of endonasal surgeries. Proceedings of SPIE, 2014, , .	0.8	7
122	In vivo reproducibility of robotic probe placement for an integrated US-CT image-guided radiation therapy system. , 2014, , .		1
123	Short-Lag Spatial Coherence Imaging of Cardiac Ultrasound Data: Initial Clinical Results. Ultrasound in Medicine and Biology, 2013, 39, 1861-1874.	1.5	65
124	Short-lag spatial coherence beamforming of photoacoustic images for enhanced visualization of prostate brachytherapy seeds. Biomedical Optics Express, 2013, 4, 1964.	2.9	88
125	Coherent flow imaging: A power Doppler imaging technique based on backscatter spatial coherence. , 2013, , .		4
126	A cooperatively controlled robot for ultrasound monitoring of radiation therapy. , 2013, 2013, 3071-3076.		22

8

#	Article	IF	CITATIONS
127	Improved visualization of endocardial borders with Short-Lag Spatial Coherence imaging of fundamental and harmonic ultrasound data. , 2012, , .		6
128	<i>In vivo</i> liver tracking with a high volume rate 4D ultrasound scanner and a 2D matrix array probe. Physics in Medicine and Biology, 2012, 57, 1359-1374.	3.0	46
129	Comparative resolution and tracking performance in B-mode and short-lag spatial coherence (SLSC) images. , 2011, , .		3