
Philip w Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6412304/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of ¹¹ C, ¹⁸ F, ¹⁵ O, and ¹³ N Radiolabels for Positron Emission Tomography. Angewandte Chemie - International Edition, 2008, 47, 8998-9033.	13.8	805
2	Thermal Stability and Explosive Hazard Assessment of Diazo Compounds and Diazo Transfer Reagents. Organic Process Research and Development, 2020, 24, 67-84.	2.7	166
3	Homogeneous Catalyzed Reactions of Levulinic Acid: To γâ€Valerolactone and Beyond. ChemSusChem, 2016, 9, 2037-2047.	6.8	120
4	Rapid Multiphase Carbonylation Reactions by Using a Microtube Reactor: Applications in Positron Emission Tomography11C-Radiolabeling. Angewandte Chemie - International Edition, 2007, 46, 2875-2878.	13.8	114
5	Emerging porous materials in confined spaces: from chromatographic applications to flow chemistry. Chemical Society Reviews, 2019, 48, 2566-2595.	38.1	103
6	Catalytic Transformation of Levulinic Acid to 2-Methyltetrahydrofuran Using Ruthenium– <i>N</i> -Triphos Complexes. ACS Catalysis, 2015, 5, 2500-2512.	11.2	102
7	Rapid formation of amidesvia carbonylative coupling reactions using a microfluidic device. Chemical Communications, 2006, , 546-548.	4.1	83
8	Antibody Fragment and Affibody ImmunoPET Imaging Agents: Radiolabelling Strategies and Applications. ChemMedChem, 2018, 13, 2466-2478.	3.2	77
9	Transition metal mediated [¹¹ C]carbonylation reactions: recent advances and applications. Journal of Labelled Compounds and Radiopharmaceuticals, 2014, 57, 195-201.	1.0	66
10	Rapid Carbonâ€11 Radiolabelling for PET Using Microfluidics. Chemistry - A European Journal, 2011, 17, 460-463.	3.3	65
11	Copper(i) scorpionate complexes and their application in palladium-mediated [11C]carbonylation reactions. Chemical Communications, 2009, , 3696.	4.1	64
12	A dynamic covalent imine gel as a luminescent sensor. Chemical Communications, 2014, 50, 11942-11945.	4.1	56
13	Facile Preparation of Drug-Loaded Tristearin Encapsulated Superparamagnetic Iron Oxide Nanoparticles Using Coaxial Electrospray Processing. Molecular Pharmaceutics, 2017, 14, 2010-2023.	4.6	55
14	Radiolabelling with shortâ€ived PET (positron emission tomography) isotopes using microfluidic reactors. Journal of Chemical Technology and Biotechnology, 2009, 84, 309-315.	3.2	53
15	Ruthenium-catalysed hydrogenation of esters using tripodal phosphine ligands. Journal of Molecular Catalysis A, 2011, 346, 70-78.	4.8	49
16	A catalytic chiral gel microfluidic reactor assembled via dynamic covalent chemistry. Chemical Science, 2015, 6, 2292-2296.	7.4	47
17	Polar Self-Assembly: Steric Effects Leading to Polar Mixed-Ligand Coordination Cages. Chemistry - A European Journal, 2006, 12, 2448-2453.	3.3	42
18	ROP relationships between coordination polymers and discrete complexes: discrete bowl-shaped isomers of a 2-dimensional {M4L3}n polymer. CrystEngComm, 2004, 6, 408.	2.6	38

Philip w Miller

#	Article	IF	CITATIONS
19	Gas–Liquid Segmented Flow Microfluidics for Screening Pdâ€Catalyzed Carbonylation Reactions. Chemistry - A European Journal, 2012, 18, 2768-2772.	3.3	38
20	The Cyclic "Silver-Diphos―Motif [Ag2(μ-diphosphine)2]2+ as a Synthon for Building up Larger Structures. Inorganic Chemistry, 2008, 47, 8367-8379.	4.0	31
21	Synthesis, Characterization, and Reactivity of Ruthenium Hydride Complexes of N-Centered Triphosphine Ligands. Inorganic Chemistry, 2014, 53, 3742-3752.	4.0	31
22	Rapid carbonylative coupling reactions using palladium(i) dimers: applications to 11CO-radiolabelling for the synthesis of PET tracers. Organic and Biomolecular Chemistry, 2011, 9, 3499.	2.8	30
23	On the Use of Differential Scanning Calorimetry for Thermal Hazard Assessment of New Chemistry: Avoiding Explosive Mistakes. Angewandte Chemie - International Edition, 2020, 59, 15798-15802.	13.8	30
24	[¹¹ C]Carbon Disulfide: A Versatile Reagent for PET Radiolabelling. Chemistry - A European Journal, 2012, 18, 433-436.	3.3	28
25	The preparation of multimetallic complexes using sterically bulky N-centred tripodal dialkyl phosphino ligands. Journal of Organometallic Chemistry, 2010, 695, 1138-1145.	1.8	25
26	Carbonâ€11 Radiolabelling of Organosulfur Compounds: ¹¹ C Synthesis of the Progesterone Receptor Agonist Tanaproget. Chemistry - A European Journal, 2015, 21, 9034-9038.	3.3	25
27	Application of Microfluidics to the Ultra-Rapid Preparation of Fluorine-18 Labelled Compounds. Current Radiopharmaceuticals, 2010, 3, 254-262.	0.8	25
28	Assembly of a coordination cage with four aromatic channel receptors on the outside. Chemical Communications, 2002, , 2008-2009.	4.1	21
29	Beyond Triphos – New hinges for a classical chelating ligand. Coordination Chemistry Reviews, 2015, 299, 39-60.	18.8	21
30	Variable coordination behaviour of pyrazole-containing N,P and N,P(O) ligands towards palladium(ii). Dalton Transactions, 2007, , 2823.	3.3	18
31	Binding and photodissociation of CO in iron(ii) complexes for application in positron emission tomography (PET) radiolabelling. Dalton Transactions, 2011, 40, 6210.	3.3	17
32	Diazo-Transfer Reagent 2-Azido-4,6-dimethoxy-1,3,5-triazine Displays Highly Exothermic Decomposition Comparable to Tosyl Azide. Journal of Organic Chemistry, 2019, 84, 5893-5898.	3.2	16
33	Cobalt(- <scp>i</scp>) triphos dinitrogen complexes: activation and silyl-functionalisation of N ₂ . Chemical Communications, 2019, 55, 6579-6582.	4.1	14
34	ScorpoPhos: a novel phosphine-nitrogen ligand containing a tris(pyrazolyl)borate ligand core. Dalton Transactions, 2008, , 2677.	3.3	13
35	Insight into the stereoelectronic parameters of N-triphos ligands via coordination to tungsten(0). Dalton Transactions, 2016, 45, 5536-5548.	3.3	13
36	Ammonium [¹¹ C]thiocyanate: revised preparation and reactivity studies of a versatile nucleophile for carbon-11 radiolabelling. MedChemComm, 2018, 9, 1311-1314.	3.4	13

Philip w Miller

#	Article	IF	CITATIONS
37	Synthesis and reactivity of an N-triphos Mo(0) dinitrogen complex. Dalton Transactions, 2018, 47, 11386-11396.	3.3	12
38	Steric control over the formation of cis and trans bis-chelated palladium(ii) complexes using a new series of flexible N,P pyridyl–phosphine ligands. Dalton Transactions, 2007, , 4556.	3.3	10
39	<i>N</i> â€heterocyclic carbenes as ligands in palladiumâ€mediated [¹¹ C]radiolabelling of [¹¹ C]amides for positron emission tomography. Journal of Labelled Compounds and Radiopharmaceuticals, 2011, 54, 135-139.	1.0	9
40	Synthesis and pre-clinical evaluation of a [18F]fluoromethyl-tanaproget derivative for imaging of progesterone receptor expression. RSC Advances, 2016, 6, 57569-57579.	3.6	8
41	Synthesis and characterisation of a range of Fe, Co, Ru and Rh triphos complexes and investigations into the catalytic hydrogenation of levulinic acid. Journal of Organometallic Chemistry, 2021, 935, 121650.	1.8	8
42	Triphosphine Ligands: Coordination Chemistry and Recent Catalytic Applications. Structure and Bonding, 2016, , 31-61.	1.0	7
43	Synthesis, characterisation and coordination chemistry of a new multidentate P2N4 ligand system. Dalton Transactions, 2009, , 5284.	3.3	5
44	Microfluidic Hydrogenation Reactions by using a Channel‣upported Rhodium Catalyst. ChemCatChem, 2014, 6, 1199-1203.	3.7	5
45	Surface modification of supramolecular nanotubes and selective guest capture. New Journal of Chemistry, 2014, 38, 3755-3761.	2.8	5
46	On the Use of Differential Scanning Calorimetry for Thermal Hazard Assessment of New Chemistry: Avoiding Explosive Mistakes. Angewandte Chemie, 2020, 132, 15930-15934.	2.0	5
47	Rapid formation of 2-lithio-1-(triphenylmethyl)imidazole and substitution reactions in flow. Reaction Chemistry and Engineering, 2021, 6, 2018-2023.	3.7	3
48	Synthesis of carbon-11 radiolabelled transition metal complexes using ¹¹ C-dithiocarbamates. Dalton Transactions, 2022, 51, 5004-5008.	3.3	3
49	N-Centered Tripodal Phosphine Re(V) and Tc(V) Oxo Complexes: Revisiting a [3 + 2] Mixed-Ligand Approach. Inorganic Chemistry, 2022, 61, 8000-8014.	4.0	3
50	The Synthesis, Characterization and Reactivity of a Series of Ruthenium N -triphos ^{Ph} Complexes. Journal of Visualized Experiments, 2015, , .	0.3	2
51	Synthesis and crystallographic characterisation of a homologous series of bis-tridentate phosphine oxide NP3O3 Fe(II), Co(II), Ni(II) and Cu(II) complexes. Inorganica Chimica Acta, 2020, 512, 119870.	2.4	1