List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6412035/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molybdenum oxide as an efficient promoter to enhance the NH3-SCR performance of CeO2-SiO2 catalyst for NO removal. Catalysis Today, 2022, 397-399, 475-483.	4.4	19
2	Synergistic effects of CeO2/Cu2O on CO catalytic oxidation: Electronic interaction and oxygen defect. Journal of Rare Earths, 2022, 40, 1211-1218.	4.8	17
3	Enhancing low-temperature NH3-SCR performance of Fe–Mn/CeO2 catalyst by Al2O3 modification. Journal of Rare Earths, 2022, 40, 1454-1461.	4.8	26
4	Catalytic enhancement of small sizes of CeO2 additives on Ir/Al2O3 for toluene oxidation. Applied Surface Science, 2022, 571, 151200.	6.1	23
5	Effect of different introduction methods of cerium and tin on the properties of titanium-based catalysts for the selective catalytic reduction of NO by NH3. Journal of Colloid and Interface Science, 2022, 613, 320-336.	9.4	11
6	Enhanced methanol selectivity of Cu O/TiO2 photocatalytic CO2 reduction: Synergistic mechanism of surface hydroxyl and low-valence copper species. Journal of CO2 Utilization, 2022, 55, 101825.	6.8	18
7	CeO2 doping boosted low-temperature NH3-SCR activity of FeTiOx catalyst: A microstructure analysis and reaction mechanistic study. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	6.0	5
8	Copper Single Atom-Triggered Niobia–Ceria Catalyst for Efficient Low-Temperature Reduction of Nitrogen Oxides. ACS Catalysis, 2022, 12, 2441-2453.	11.2	48
9	Sulfur Vacancy-Rich MoS ₂ -Catalyzed Hydrodeoxygenation of Lactic Acid to Biopropionic Acid. ACS Sustainable Chemistry and Engineering, 2022, 10, 5463-5475.	6.7	18
10	Single-Atom Ce-Modified α-Fe ₂ O ₃ for Selective Catalytic Reduction of NO with NH ₃ . Environmental Science & Technology, 2022, 56, 10442-10453.	10.0	52
11	Unraveling the SO ₂ Poisoning Effect over the Lifetime of MeO _{<i>x</i>} (Me =) Tj ETQq1 with Surface Species. Journal of Physical Chemistry C, 2022, 126, 12168-12177.	1 0.7843 3.1	14 rgBT /O 12
12	Understanding the high performance of an iron-antimony binary metal oxide catalyst in selective catalytic reduction of nitric oxide with ammonia and its tolerance of water/sulfur dioxide. Journal of Colloid and Interface Science, 2021, 581, 427-441.	9.4	28
13	The facet-regulated oxidative dehydrogenation of lactic acid to pyruvic acid on α-Fe ₂ O ₃ . Green Chemistry, 2021, 23, 328-332.	9.0	18
14	Pilot test of environment-friendly catalysts for the DeNO _x of low-temperature flue gas from a coal-fired plant. Catalysis Science and Technology, 2021, 11, 3164-3175.	4.1	3
15	Advantageous Role of Ir ⁰ Supported on TiO ₂ Nanosheets in Photocatalytic CO ₂ Reduction to CH ₄ : Fast Electron Transfer and Rich Surface Hydroxyl Groups. ACS Applied Materials & Interfaces, 2021, 13, 6219-6228.	8.0	52
16	The effects of dopant on catalytic activity of Pd/mesoporous alumina for toluene oxidation. Research on Chemical Intermediates, 2021, 47, 1239-1251.	2.7	1
17	Ce–Si Mixed Oxide: A High Sulfur Resistant Catalyst in the NH ₃ –SCR Reaction through the Mechanism-Enhanced Process. Environmental Science & Technology, 2021, 55, 4017-4026.	10.0	66
18	One-Pot Synthesis of CeO2 Modified SBA-15 With No Pore Clogging for NO Reduction by CO. Frontiers in Environmental Chemistry, 2021, 2, .	1.6	2

#	Article	IF	CITATIONS
19	Evaluation of Manganese Oxide Octahedral Molecular Sieves for CO and C3H6 Oxidation at Diesel Exhaust Conditions. Frontiers in Environmental Chemistry, 2021, 2, .	1.6	8
20	Construction of Fe2O3 loaded and mesopore confined thin-layer titania catalyst for efficient NH3-SCR of NOx with enhanced H2O/SO2 tolerance. Applied Catalysis B: Environmental, 2021, 287, 119982.	20.2	64
21	Edge-Rich Bicrystalline 1T/2H-MoS ₂ Cocatalyst-Decorated {110} Terminated CeO ₂ Nanorods for Photocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2021, 13, 35818-35827.	8.0	65
22	Revealing the effect of paired redox-acid sites on metal oxide catalysts for efficient NO removal by NH3-SCR. Journal of Hazardous Materials, 2021, 416, 125826.	12.4	43
23	Transformation of Highly Stable Pt Single Sites on Defect Engineered Ceria into Robust Pt Clusters for Vehicle Emission Control. Environmental Science & Technology, 2021, 55, 12607-12618.	10.0	21
24	Effects of different methods of introducing Mo on denitration performance and anti-SO2 poisoning performance of CeO2. Chinese Journal of Catalysis, 2021, 42, 1488-1499.	14.0	19
25	Relationships between Adsorption Amount of Surface Sulfate and NH ₃ -SCR Performance over CeO ₂ . Journal of Physical Chemistry C, 2021, 125, 21964-21974.	3.1	19
26	Conquering ammonium bisulfate poison over low-temperature NH3-SCR catalysts: A critical review. Applied Catalysis B: Environmental, 2021, 297, 120388.	20.2	120
27	Highly efficient Pt catalyst on newly designed CeO2-ZrO2-Al2O3 support for catalytic removal of pollutants from vehicle exhaust. Chemical Engineering Journal, 2021, 426, 131855.	12.7	30
28	Effects of different treatment atmospheres on CeO ₂ /g-C ₃ N ₄ photocatalytic CO ₂ reduction: good or bad?. Catalysis Science and Technology, 2021, 11, 2827-2833.	4.1	9
29	Porous biochar supported Ag3PO4 photocatalyst for "two-in-one―synergistic adsorptive-photocatalytic removal of methylene blue under visible light irradiation. Journal of Environmental Chemical Engineering, 2021, 9, 106753.	6.7	14
30	Enhanced low-temperature NH3-SCR performance of CeTiO catalyst via surface Mo modification. Chinese Journal of Catalysis, 2020, 41, 364-373.	14.0	44
31	Regeneration of deactivated CeCo O2 catalyst by simple thermal treatment. Journal of Rare Earths, 2020, 38, 899-905.	4.8	4
32	Gas phase sulfation of ceria-zirconia solid solutions for generating highly efficient and SO2 resistant NH3-SCR catalysts for NO removal. Journal of Hazardous Materials, 2020, 388, 121729.	12.4	72
33	Adsorption of acetone and cyclohexane onto CO2 activated hydrochars. Chemosphere, 2020, 245, 125664.	8.2	43
34	High Resistance of SO2 and H2O over Monolithic Mn-Fe-Ce-Al-O Catalyst for Low Temperature NH3-SCR. Catalysts, 2020, 10, 1329.	3.5	8
35	Morphology-Sensitive Sulfation Effect on Ceria Catalysts for NH3-SCR. Topics in Catalysis, 2020, 63, 932-943.	2.8	24
36	Crystal-Plane Effects of CeO ₂ {110} and CeO ₂ {100} on Photocatalytic CO ₂ Reduction: Synergistic Interactions of Oxygen Defects and Hydroxyl Groups. ACS Sustainable Chemistry and Engineering, 2020, 8, 14397-14406.	6.7	80

#	Article	IF	CITATIONS
37	Pt Deposites on TiO2 for Photocatalytic H2 Evolution: Pt Is Not Only the Cocatalyst, but Also the Defect Repair Agent. Catalysts, 2020, 10, 1047.	3.5	12
38	Tuning Singleâ€atom Pt ₁ â^'CeO ₂ Catalyst for Efficient CO and C ₃ H ₆ Oxidation: Size Effect of Ceria on Pt Structural Evolution. ChemNanoMat, 2020, 6, 1797-1805.	2.8	27
39	Unravelling the structure sensitivity of CuO/SiO ₂ catalysts in the NO + CO reaction. Catalysis Science and Technology, 2020, 10, 3848-3856.	4.1	7
40	Facile Ball-Milling Synthesis of CuO/Biochar Nanocomposites for Efficient Removal of Reactive Red 120. ACS Omega, 2020, 5, 5748-5755.	3.5	79
41	The dual effects of ammonium bisulfate on the selective catalytic reduction of NO with NH3 over Fe2O3-WO3 catalyst confined in MCM-41. Chemical Engineering Journal, 2020, 389, 124271.	12.7	24
42	Sustainable production of pyruvic acid: oxidative dehydrogenation of lactic acid over the FeMoO/P catalyst. New Journal of Chemistry, 2020, 44, 5884-5894.	2.8	8
43	CeO2 nanocrystal-modified layered MoS2/g-C3N4 as 0D/2D ternary composite for visible-light photocatalytic hydrogen evolution: Interfacial consecutive multi-step electron transfer and enhanced H2O reactant adsorption. Applied Catalysis B: Environmental, 2019, 259, 118072.	20.2	158
44	Getting Insights into the Temperature-Specific Active Sites on Platinum Nanoparticles for CO Oxidation: A Combined in Situ Spectroscopic and ab Initio Density Functional Theory Study. ACS Catalysis, 2019, 9, 7759-7768.	11.2	33
45	Insights into the precursor effect on the surface structure of γ-Al2O3 and NO + CO catalytic performance of CO-pretreated CuO/MnOx/γ-Al2O3 catalysts. Journal of Colloid and Interface Science, 2019, 554, 611-618.	9.4	15
46	Controlling Dynamic Structural Transformation of Atomically Dispersed CuO _{<i>x</i>} Species and Influence on Their Catalytic Performances. ACS Catalysis, 2019, 9, 9840-9851.	11.2	52
47	Pore Size Expansion Accelerates Ammonium Bisulfate Decomposition for Improved Sulfur Resistance in Low-Temperature NH ₃ -SCR. ACS Applied Materials & Interfaces, 2019, 11, 4900-4907.	8.0	81
48	Doping effect of Sm on the TiO ₂ /CeSmO _x catalyst in the NH ₃ -SCR reaction: structure–activity relationship, reaction mechanism and SO ₂ tolerance. Catalysis Science and Technology, 2019, 9, 3554-3567.	4.1	46
49	Sorption of tetracycline on H ₂ O ₂ -modified biochar derived from rape stalk. Environmental Pollutants and Bioavailability, 2019, 31, 198-207.	3.0	36
50	Cavity size dependent SO2 resistance for NH3-SCR of hollow structured CeO2-TiO2 catalysts. Catalysis Communications, 2019, 128, 105719.	3.3	38
51	Ultrafine Bi ₃ TaO ₇ Nanodot-Decorated V, N Codoped TiO ₂ Nanoblocks for Visible-Light Photocatalytic Activity: Interfacial Effect and Mechanism Insight. ACS Applied Materials & Interfaces, 2019, 11, 13011-13021.	8.0	41
52	An efficient and durable hierarchically porous KLA/TiPO catalyst for vapor phase condensation of lactic acid to 2,3-pentanedione. New Journal of Chemistry, 2019, 43, 5972-5979.	2.8	3
53	Surface hydroxylated hematite promotes photoinduced hole transfer for water oxidation. Journal of Materials Chemistry A, 2019, 7, 8050-8054.	10.3	27
54	Enhancing the deNO performance of MnO /CeO2-ZrO2 nanorod catalyst for low-temperature NH3-SCR by TiO2 modification. Chemical Engineering Journal, 2019, 369, 46-56.	12.7	153

#	Article	IF	CITATIONS
55	Promoting N ₂ Selectivity of CeMnO _{<i>x</i>} Catalyst by Supporting TiO ₂ in NH ₃ -SCR Reaction. Industrial & Engineering Chemistry Research, 2019, 58, 6325-6332.	3.7	40
56	Vapor-Phase Deoxygenation of Lactic Acid to Biopropionic Acid over Dispersant-Enhanced Molybdenum Oxide Catalyst. Industrial & Engineering Chemistry Research, 2019, 58, 101-109.	3.7	16
57	Investigation of Two-Phase Intergrowth and Coexistence in Mn–Ce–Ti–O Catalysts for the Selective Catalytic Reduction of NO with NH ₃ : Structure–Activity Relationship and Reaction Mechanism. Industrial & Engineering Chemistry Research, 2019, 58, 849-862.	3.7	43
58	Biochar amendment improves crop production in problem soils: A review. Journal of Environmental Management, 2019, 232, 8-21.	7.8	377
59	Chemically activated hydrochar as an effective adsorbent for volatile organic compounds (VOCs). Chemosphere, 2019, 218, 680-686.	8.2	145
60	Effect of Ti4+ and Sn4+ co-incorporation on the catalytic performance of CeO2-MnO catalyst for low temperature NH3-SCR. Applied Surface Science, 2019, 476, 283-292.	6.1	75
61	Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: A critical review. Chemosphere, 2019, 218, 845-859.	8.2	299
62	Improved activity and significant SO2 tolerance of samarium modified CeO2-TiO2 catalyst for NO selective catalytic reduction with NH3. Applied Catalysis B: Environmental, 2019, 244, 671-683.	20.2	294
63	Synthesis of CrOx/C catalysts for low temperature NH3-SCR with enhanced regeneration ability in the presence of SO2. RSC Advances, 2018, 8, 3858-3868.	3.6	20
64	Nonmetal element doped g-C ₃ N ₄ with enhanced H ₂ evolution under visible light irradiation. Journal of Materials Research, 2018, 33, 1268-1278.	2.6	35
65	Selective Catalytic Reduction of NO by NH ₃ on CeO ₂ –MO _{<i>x</i>} (M = Ti, Si, and Al) Dual Composite Catalysts: Impact of Surface Acidity. Industrial & Engineering Chemistry Research, 2018, 57, 490-497.	3.7	31
66	Insights into the Sm/Zr co-doping effects on N2 selectivity and SO2 resistance of a MnOx-TiO2 catalyst for the NH3-SCR reaction. Chemical Engineering Journal, 2018, 347, 27-40.	12.7	233
67	Influence of calcination temperature on the plate-type V2O5–MoO3/TiO2 catalyst for selective catalytic reduction of NO. Reaction Kinetics, Mechanisms and Catalysis, 2018, 124, 603-617.	1.7	12
68	Effect of precursors on the structure and activity of CuO-CoOx/γ-Al2O3 catalysts for NO reduction by CO. Journal of Colloid and Interface Science, 2018, 509, 334-345.	9.4	45
69	Synthesis of Surfaceâ€Controlled CePO4and Its Application for Catalyzed Decarbonylation of Lactic Acid to Acetaldehyde. ChemistrySelect, 2018, 3, 12389-12395.	1.5	2
70	NO Reduction by CO over Highly Active and Stable Perovskite Oxide Catalysts La _{0.8} Ce _{0.2} M _{0.25} Co _{0.75} O ₃ (M = Cu, Mn,) Tj I	ЕТ QsqD 0 0	rg ₿ ₹ /Overlo
71	Preparation and Investigation of Iron–Cerium Oxide Compounds for NO _{<i>x</i>} Reduction. Industrial & Engineering Chemistry Research, 2018, 57, 16675-16683.	3.7	28

#	Article	IF	CITATIONS
73	Mn-Modified CuO, CuFe ₂ O ₄ , and γ-Fe ₂ O ₃ Three-Phase Strong Synergistic Coexistence Catalyst System for NO Reduction by CO with a Wider Active Window. ACS Applied Materials & Interfaces, 2018, 10, 40509-40522.	8.0	92
74	Morphology and Crystal-Plane Effects of CeO ₂ on TiO ₂ /CeO ₂ Catalysts during NH ₃ -SCR Reaction. Industrial & Engineering Chemistry Research, 2018, 57, 12407-12419.	3.7	90
75	Synthesis of Both Powdered and Preformed MnO <i>_x</i> –CeO ₂ –Al ₂ O ₃ Catalysts by Self-Propagating High-Temperature Synthesis for the Selective Catalytic Reduction of NO <i>_x</i> with NH ₃ . ACS Omega. 2018. 3, 5692-5703.	3.5	17
76	Crystal-plane-dependent metal oxide-support interaction in CeO2/g-C3N4 for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 238, 111-118.	20.2	178
77	Getting Insights into the Influence of Crystal Plane Effect of Shaped Ceria on Its Catalytic Performances. Journal of Physical Chemistry C, 2018, 122, 20402-20409.	3.1	35
78	Construction of hybrid multi-shell hollow structured CeO ₂ –MnO _x materials for selective catalytic reduction of NO with NH ₃ . RSC Advances, 2017, 7, 5989-5999.	3.6	28
79	Influence of different supports on the physicochemical properties and denitration performance of the supported Mn-based catalysts for NH3-SCR at low temperature. Applied Surface Science, 2017, 402, 208-217.	6.1	129
80	Selective catalytic reduction of NO x by NH 3 over CeO 2 supported on TiO 2 : Comparison of anatase, brookite, and rutile. Applied Catalysis B: Environmental, 2017, 208, 82-93.	20.2	165
81	Ultra-low loading of copper modified TiO2/CeO2 catalysts for low-temperature selective catalytic reduction of NO by NH3. Applied Catalysis B: Environmental, 2017, 207, 366-375.	20.2	156
82	Enhanced visible light photocatalytic hydrogen evolution via cubic CeO2 hybridized g-C3N4 composite. Applied Catalysis B: Environmental, 2017, 218, 51-59.	20.2	165
83	Novel MnO -CeO2 nanosphere catalyst for low-temperature NH3-SCR. Catalysis Communications, 2017, 100, 98-102.	3.3	36
84	Enhanced low-temperature NH 3 -SCR performance of MnO x /CeO 2 catalysts by optimal solvent effect. Applied Surface Science, 2017, 420, 407-415.	6.1	91
85	Acid pretreatment effect on the physicochemical property and catalytic performance of CeO 2 for NH 3 -SCR. Applied Catalysis A: General, 2017, 542, 282-288.	4.3	100
86	Efficient Conversion of Bio‣actic Acid to 2,3â€Pentanedione on Cesiumâ€Doped Hydroxyapatite Catalysts with Balanced Acid–Base Sites. ChemCatChem, 2017, 9, 4621-4627.	3.7	27
87	Migration of copper species in Ce _x Cu _{1â^'x} O ₂ catalyst driven by thermal treatment and the effect on CO oxidation. Physical Chemistry Chemical Physics, 2017, 19, 21840-21847.	2.8	33
88	Comparative Study of Different Doped Metal Cations on the Reduction, Acidity, and Activity of Fe ₉ M ₁ O _{<i>x</i>} (M = Ti ⁴⁺ , Ce ^{4+/3+} ,) Tj ETQ	q0 Q Q rgB ⁻	T /Qyerlock 1
89	Ammonia promoted barium sulfate catalyst for dehydration of lactic acid to acrylic acid. RSC Advances, 2017, 7, 54696-54705.	3.6	12
	Sustainable Production of 2,3-Pentanedione: Catalytic Performance of		

 90
 Ba₂P₂O₇ Doped with Cs for Vapor-Phase Condensation of Lactic
 3.7
 11

 Acid. Industrial & amp; Engineering Chemistry Research, 2017, 56, 14437-14446.
 11

#	Article	IF	CITATIONS
91	Understanding the effect of CuO dispersion state on the activity of CuO modified Ce0.7Zr0.3O2 for NO removal. Applied Surface Science, 2017, 403, 347-355.	6.1	10
92	Promotional Effect of Ce on Iron-Based Catalysts for Selective Catalytic Reduction of NO with NH3. Catalysts, 2016, 6, 112.	3.5	21
93	Ceria-based catalysts for low-temperature selective catalytic reduction of NO with NH ₃ . Catalysis Science and Technology, 2016, 6, 1248-1264.	4.1	293
94	Effects of different manganese precursors as promoters on catalytic performance of CuO–MnO _x /TiO ₂ catalysts for NO removal by CO. Physical Chemistry Chemical Physics, 2015, 17, 15996-16006.	2.8	49
95	Effect of metal ions doping (M = Ti4+, Sn4+) on the catalytic performance of MnO /CeO2 catalyst for low temperature selective catalytic reduction of NO with NH3. Applied Catalysis A: General, 2015, 495, 206-216.	4.3	189
96	Improved low temperature NH ₃ -SCR performance of FeMnTiO _x mixed oxide with CTAB-assisted synthesis. Chemical Communications, 2015, 51, 3470-3473.	4.1	69
97	Promotional effect of doping SnO ₂ into TiO ₂ over a CeO ₂ /TiO ₂ catalyst for selective catalytic reduction of NO by NH ₃ . Catalysis Science and Technology, 2015, 5, 2188-2196.	4.1	103
98	Getting insight into the influence of SO2 on TiO2/CeO2 for the selective catalytic reduction of NO by NH3. Applied Catalysis B: Environmental, 2015, 165, 589-598.	20.2	307
99	Engineering the NiO/CeO ₂ interface to enhance the catalytic performance for CO oxidation. RSC Advances, 2015, 5, 98335-98343.	3.6	87
100	Synthesis, characterization and catalytic performance of FeMnTiOx mixed oxides catalyst prepared by a CTAB-assisted process for mid-low temperature NH3-SCR. Applied Catalysis A: General, 2015, 505, 235-242.	4.3	82
101	Comparative study on the catalytic CO oxidation properties of CuO/CeO2 catalysts prepared by solid state and wet impregnation. Chinese Journal of Catalysis, 2014, 35, 1347-1358.	14.0	55
102	Improving the dispersion of CeO2 on γ-Al2O3 to enhance the catalytic performances of CuO/CeO2/γ-Al2O3 catalysts for NO removal by CO. Catalysis Communications, 2014, 51, 95-99.	3.3	33
103	Correlation between the physicochemical properties and catalytic performances of CexSn1–xO2 mixed oxides for NO reduction by CO. Applied Catalysis B: Environmental, 2014, 144, 152-165.	20.2	224
104	Effect of CO-pretreatment on the CuO–V ₂ O ₅ /γ-Al ₂ O ₃ catalyst for NO reduction by CO. Catalysis Science and Technology, 2014, 4, 4416-4425.	4.1	88
105	Influence of CeO ₂ modification on the properties of Fe ₂ O ₃ –Ti _{0.5} Sn _{0.5} O ₂ catalyst for NO reduction by CO. Catalysis Science and Technology, 2014, 4, 482-493.	4.1	59
106	Investigation of the structure, acidity, and catalytic performance of CuO/Ti0.95Ce0.05O2 catalyst for the selective catalytic reduction of NO by NH3 at low temperature. Applied Catalysis B: Environmental, 2014, 150-151, 315-329.	20.2	221
107	Efficient fabrication of active CuO-CeO2/SBA-15 catalysts for preferential oxidation of CO by solid state impregnation. Applied Catalysis B: Environmental, 2014, 146, 201-212.	20.2	105
108	Tailoring copper valence states in CuOδ/γ-Al2O3 catalysts by an in situ technique induced superior catalytic performance for simultaneous elimination of NO and CO. Physical Chemistry Chemical Physics, 2013, 15, 14945.	2.8	29

#	Article	IF	CITATIONS
109	Investigation of the physicochemical properties and catalytic activities of Ce _{0.67} M _{0.33} O ₂ (M = Zr ⁴⁺ , Ti ⁴⁺ ,) Tj ETQq1	1 0.784314 r 4.1	∙gBT ¦Overlo
110	A comparative study of different doped metal cations on the reduction, adsorption and activity of CuO/Ce0.67M0.33O2 (M=Zr4+, Sn4+, Ti4+) catalysts for NO+CO reaction. Applied Catalysis B: Environmental, 2013, 130-131, 293-304.	20.2	137
111	NO reduction by CO over CuO–CeO2 catalysts: effect of preparation methods. Catalysis Science and Technology, 2013, 3, 1355.	4.1	148
112	Synthesis of sandwich-like TiO2@C composite hollow spheres with high rate capability and stability for lithium-ion batteries. Journal of Power Sources, 2013, 221, 141-148.	7.8	90
113	Influence of cerium precursors on the structure and reducibility of mesoporous CuO-CeO2 catalysts for CO oxidation. Applied Catalysis B: Environmental, 2012, 119-120, 308-320.	20.2	348
114	Study of the Properties of CuO/VO _{<i>x</i>} /Ti _{0.5} Sn _{0.5} O ₂ Catalysts and Their Activities in NO + CO Reaction. ACS Catalysis, 2011, 1, 468-480.	11.2	91
115	Efficient fabrication of ZrO2-doped TiO2 hollow nanospheres with enhanced photocatalytic activity of rhodamine B degradation. Journal of Colloid and Interface Science, 2011, 364, 288-297.	9.4	50
116	Morphology and Crystalâ€Plane Effects of Nanoscale Ceria on the Activity of CuO/CeO ₂ for NO Reduction by CO. ChemCatChem, 2011, 3, 978-989.	3.7	255
117	The Remarkable Enhancement of COâ€Pretreated CuOMn ₂ O ₃ ∫i³â€Al ₂ O ₃ Supported Catalyst for the Reduction of NO with CO: The Formation of Surface Synergetic Oxygen Vacancy. Chemistry - A European Journal, 2011, 17, 5668-5679.	3.3	109
118	Dispersion, reduction and catalytic performance of CuO supported on ZrO2-doped TiO2 for NO removal by CO. Applied Catalysis B: Environmental, 2011, 103, 206-220.	20.2	128
119	Correlation of structural characteristics with catalytic performance of CuO/CexZr1â^'xO2 catalysts for NO reduction by CO. Journal of Catalysis, 2010, 275, 45-60.	6.2	185
120	Influence of preparation method on the catalytic activities of CuO/Ce0.67Zr0.33O2 catalysts in CO+O2 reaction. Applied Catalysis B: Environmental, 2010, 96, 449-457.	20.2	34
121	Influence of ferric oxide modification on the properties of copper oxide supported on γ-alumina. Journal of Colloid and Interface Science, 2010, 343, 522-528.	9.4	15
122	Effect of MnOx modification on the activity and adsorption of CuO/Ce0.67Zr0.33O2 catalyst for NO reduction. Journal of Colloid and Interface Science, 2010, 349, 246-255.	9.4	35
123	Studies on surface structure of MxOy/MoO3/CeO2 system (M=Ni, Cu, Fe) and its influence on SCR of NO by NH3. Applied Catalysis B: Environmental, 2010, 95, 144-152.	20.2	90
124	In situ FT-infrared investigation of CO or/and NO interaction with CuO/Ce0.67Zr0.33O2 catalysts. Applied Catalysis B: Environmental, 2009, 90, 578-586.	20.2	112
125	Preparation, Characterization and Catalytic Activity for CO Oxidation of SiO2 Hollow Spheres Supporting CuO Catalysts. Catalysis Letters, 2008, 120, 215-220.	2.6	24
126	Influence of CO pretreatment on the activities of CuO/γ-Al2O3 catalysts in CO+O2 reaction. Applied Catalysis B: Environmental, 2008, 79, 254-261.	20.2	118

#	Article	IF	CITATIONS
127	Synthesis, Characterization of Bimetallic V-Fe-SBA-15 and Its Catalytic Performance in the Hydroxylation of Phenol. Journal of Nanoscience and Nanotechnology, 2007, 7, 4508-4514.	0.9	6
128	Activities of supported copper oxide catalysts in the NO+CO reaction at low temperatures. Journal of Molecular Catalysis A, 2000, 162, 307-316.	4.8	90
129	Studies on supported metal oxide-oxide support interactions (An Incorporation Model). Studies in Surface Science and Catalysis, 1996, 101, 1293-1302.	1.5	25
130	The dispersion of molybdena on ceria. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 4589.	1.7	35
131	Boosting the catalytic performance of single-atom catalysts by tuning surface lattice expanding confinement. Chemical Communications, 0, , .	4.1	1