
Ritva Tikkanen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6411787/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human Desmocollin 3‒Specific IgG Antibodies Are Pathogenic in a Humanized HLA Class II Transgenic Mouse Model of Pemphigus. Journal of Investigative Dermatology, 2022, 142, 915-923.e3.	0.3	15
2	Identification of the Cysteine Protease Legumain as a Potential Chronic Hypoxia-Specific Multiple Myeloma Target Gene. Cells, 2022, 11, 292.	1.8	4
3	Stabilization of Keratinocyte Monolayer Integrity in the Presence of Anti-Desmoglein-3 Antibodies through FcRn Blockade with Efgartigimod: Novel Treatment Paradigm for Pemphigus?. Cells, 2022, 11, 942.	1.8	11
4	A Journey towards Understanding the Molecular Pathology and Developing Therapies for Lysosomal Storage Disorders. Cells, 2022, 11, 36.	1.8	0
5	Pre-clinical Gene Therapy with AAV9/AGA in Aspartylglucosaminuria Mice Provides Evidence for Clinical Translation. Molecular Therapy, 2021, 29, 989-1000.	3.7	15
6	Knockout of the CMP–Sialic Acid Transporter SLC35A1 in Human Cell Lines Increases Transduction Efficiency of Adeno-Associated Virus 9: Implications for Gene Therapy Potency Assays. Cells, 2021, 10, 1259.	1.8	5
7	Towards Splicing Therapy for Lysosomal Storage Disorders: Methylxanthines and Luteolin Ameliorate Splicing Defects in Aspartylglucosaminuria and Classic Late Infantile Neuronal Ceroid Lipofuscinosis. Cells, 2021, 10, 2813.	1.8	5
8	Detailed profile of cognitive dysfunction in children with aspartylglucosaminuria. Journal of Inherited Metabolic Disease, 2020, 43, 318-325.	1.7	7
9	Statistical Permutation Test Reveals Progressive and Region-Specific Iron Accumulation in the Thalami of Children with Aspartylglucosaminuria. Brain Sciences, 2020, 10, 677.	1.1	5
10	Succinic Semialdehyde Dehydrogenase Deficiency: In Vitro and In Silico Characterization of a Novel Pathogenic Missense Variant and Analysis of the Mutational Spectrum of ALDH5A1. International Journal of Molecular Sciences, 2020, 21, 8578.	1.8	5
11	Succinic Semialdehyde Dehydrogenase Deficiency: An Update. Cells, 2020, 9, 477.	1.8	24
12	Immortalized Human hTert/KER-CT Keratinocytes a Model System for Research on Desmosomal Adhesion and Pathogenesis of Pemphigus Vulgaris. International Journal of Molecular Sciences, 2019, 20, 3113.	1.8	12
13	Mitogen-Activated Protein Kinases: Functions in Signal Transduction and Human Diseases. International Journal of Molecular Sciences, 2019, 20, 4844.	1.8	9
14	SLPI Inhibits ATP-Mediated Maturation of IL-1β in Human Monocytic Leukocytes: A Novel Function of an Old Player. Frontiers in Immunology, 2019, 10, 664.	2.2	20
15	Susceptibility-Weighted Imaging Findings in Aspartylglucosaminuria. American Journal of Neuroradiology, 2019, 40, 1850-1854.	1.2	7
16	Flotillins in the intercalated disc are potential modulators of cardiac excitability. Journal of Molecular and Cellular Cardiology, 2019, 126, 86-95.	0.9	3
17	Amlexanox provides a potential therapy for nonsense mutations in the lysosomal storage disorder Aspartylglucosaminuria. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 668-675.	1.8	27
18	Flotillins Regulate Focal Adhesions by Interacting with α-Actinin and by Influencing the Activation of Focal Adhesion Kinase. Cells, 2018, 7, 28.	1.8	16

ΓΙΤVΑ ΤΙΚΚΑΝΕΝ

#	Article	IF	CITATIONS
19	Altered Expression of Ganglioside Metabolizing Enzymes Results in GM3 Ganglioside Accumulation in Cerebellar Cells of a Mouse Model of Juvenile Neuronal Ceroid Lipofuscinosis. International Journal of Molecular Sciences, 2018, 19, 625.	1.8	12
20	Functional Analysis of the Ser149/Thr149 Variants of Human Aspartylglucosaminidase and Optimization of the Coding Sequence for Protein Production. International Journal of Molecular Sciences, 2017, 18, 706.	1.8	3
21	Random Splicing of Several Exons Caused by a Single Base Change in the Target Exon of CRISPR/Cas9 Mediated Gene Knockout. Cells, 2016, 5, 45.	1.8	57
22	Loss of flotillin expression results in weakened desmosomal adhesion and Pemphigus vulgaris-like localisation of desmoglein-3 in human keratinocytes. Scientific Reports, 2016, 6, 28820.	1.6	32
23	Identification of Small Molecule Compounds for Pharmacological Chaperone Therapy of Aspartylglucosaminuria. Scientific Reports, 2016, 6, 37583.	1.6	38
24	Revisiting the Endocytosis of the M2 Muscarinic Acetylcholine Receptor. Membranes, 2015, 5, 197-213.	1.4	3
25	Cholinergic Transactivation of the EGFR in HaCaT Keratinocytes Stimulates a Flotillin-1 Dependent MAPK-Mediated Transcriptional Response. International Journal of Molecular Sciences, 2015, 16, 6447-6463.	1.8	10
26	Flotillin-1 facilitates toll-like receptor 3 signaling in human endothelial cells. Basic Research in Cardiology, 2014, 109, 439.	2.5	19
27	Endocytic Trafficking of Membrane-Bound Cargo: A Flotillin Point of View. Membranes, 2014, 4, 356-371.	1.4	98
28	Epidermal Growth Factor Receptor Transactivation Is Required for Mitogen-Activated Protein Kinase Activation by Muscarinic Acetylcholine Receptors in HaCaT Keratinocytes. International Journal of Molecular Sciences, 2014, 15, 21433-21454.	1.8	15
29	Dimerization of the kinase ARAF promotes MAPK pathway activation and cell migration. Science Signaling, 2014, 7, ra73.	1.6	52
30	Flotillins in Receptor Tyrosine Kinase Signaling and Cancer. Cells, 2014, 3, 129-149.	1.8	63
31	Flotillins bind to the dileucine sorting motif of βâ€site amyloid precursor proteinâ€cleaving enzyme 1 and influence its endosomal sorting. FEBS Journal, 2014, 281, 2074-2087.	2.2	26
32	Role of dynamin and clathrin in the cellular trafficking of flotillins. FEBS Journal, 2014, 281, 2956-2976.	2.2	22
33	Increased activity of mitogen activated protein kinase pathway in flotillin-2 knockout mouse model. Cellular Signalling, 2014, 26, 198-207.	1.7	29
34	Phosphatidylinositol 3-Kinase dependent upregulation of the epidermal growth factor receptor upon Flotillin-1 depletion in breast cancer cells. BMC Cancer, 2013, 13, 575.	1.1	18
35	Mitogen-Activated Protein (MAP) Kinase Scaffolding Proteins: A Recount. International Journal of Molecular Sciences, 2013, 14, 4854-4884.	1.8	66
36	Non-Neuronal Functions of the M2 Muscarinic Acetylcholine Receptor. Genes, 2013, 4, 171-197.	1.0	23

ΓΙΤνα Τικκανέν

#	Article	IF	CITATIONS
37	Flotillins Directly Interact with Î ³ -Catenin and Regulate Epithelial Cell-Cell Adhesion. PLoS ONE, 2013, 8, e84393.	1.1	32
38	Transcriptional Regulation of Flotillins by the Extracellularly Regulated Kinases and Retinoid X Receptor Complexes. PLoS ONE, 2012, 7, e45514.	1.1	17
39	Flotillin-1/Reggie-2 Protein Plays Dual Role in Activation of Receptor-tyrosine Kinase/Mitogen-activated Protein Kinase Signaling. Journal of Biological Chemistry, 2012, 287, 7265-7278.	1.6	114
40	Molecular Networks in FGF Signaling: Flotillin-1 and Cbl-Associated Protein Compete for the Binding to Fibroblast Growth Factor Receptor Substrate 2. PLoS ONE, 2012, 7, e29739.	1.1	25
41	Functional Aspects of Membrane Association of Reggie/Flotillin Proteins. Current Protein and Peptide Science, 2011, 12, 725-735.	0.7	45
42	Hetero-oligomerization of reggie-1/flotillin-2 and reggie-2/flotillin-1 is required for their endocytosis. Cellular Signalling, 2009, 21, 1287-1297.	1.7	123
43	Cbl-associated protein is tyrosine phosphorylated by c-Abl and c-Src kinases. BMC Cell Biology, 2009, 10, 80.	3.0	9
44	Identification of Structural Elements in Nox1 and Nox4 Controlling Localization and Activity. Antioxidants and Redox Signaling, 2009, 11, 1279-1287.	2.5	129
45	APâ€1 and APâ€3 Mediate Sorting of Melanosomal and Lysosomal Membrane Proteins into Distinct Postâ€Golgi Trafficking Pathways. Traffic, 2008, 9, 1157-1172.	1.3	41
46	Characterization of CXCL16 and ADAM10 in the normal and transplanted kidney. Kidney International, 2008, 74, 328-338.	2.6	51
47	Role of EGF-induced tyrosine phosphorylation of reggie-1/flotillin-2 in cell spreading and signaling to the actin cytoskeleton. Journal of Cell Science, 2007, 120, 395-406.	1.2	129
48	Polarized Transport of Alzheimer Amyloid Precursor Protein Is Mediated by Adaptor Protein Complex AP1-1B. Traffic, 2007, 8, 285-296.	1.3	27
49	Dissecting the molecular function of reggie/flotillin proteins. European Journal of Cell Biology, 2007, 86, 525-532.	1.6	150
50	Reggie-1 and reggie-2 localize in non-caveolar rafts in epithelial cells: Cellular localization is not dependent on the expression of caveolin proteins. European Journal of Cell Biology, 2007, 86, 345-352.	1.6	29
51	Regulation of ubiquitin-binding proteins by monoubiquitination. Nature Cell Biology, 2006, 8, 163-169.	4.6	279
52	Translocation of Endothelial Nitric-Oxide Synthase Involves a Ternary Complex with Caveolin-1 and NOSTRIN. Molecular Biology of the Cell, 2006, 17, 3870-3880.	0.9	70
53	Targeting of Transmembrane Protein Shrew-1 to Adherens Junctions Is Controlled by Cytoplasmic Sorting Motifs. Molecular Biology of the Cell, 2006, 17, 3397-3408.	0.9	19
54	A polycystin multiprotein complex constitutes a cholesterol-containing signalling microdomain in human kidney epithelia. Biochemical Journal, 2005, 392, 29-38.	1.7	54

ΓΙΤVΑ ΤΙΚΚΑΝΕΝ

#	Article	IF	CITATIONS
55	Oncogenic breakdowns in endocytic adaptor proteins. FEBS Letters, 2005, 579, 3231-3238.	1.3	19
56	Membrane and raft association of reggie-1/flotillin-2: role of myristoylation, palmitoylation and oligomerization and induction of filopodia by overexpression. Biochemical Journal, 2004, 378, 509-518.	1.7	227
57	Asymmetric localization of flotillins/reggies in preassembled platforms confers inherent polarity to hematopoietic cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8241-8246.	3.3	131
58	The Receptor-Bound N-Terminal Ectodomain of the Amyloid Precursor Protein Is Associated with Membrane Rafts. Biological Chemistry, 2002, 383, 1855-64.	1.2	9
59	Cytosolic and nuclear aggregation of the amyloid ?-peptide following its expression in the endoplasmic reticulum. Histochemistry and Cell Biology, 2002, 118, 353-360.	0.8	66
60	AP-4 binds basolateral signals and participates in basolateral sorting in epithelial MDCK cells. Nature Cell Biology, 2002, 4, 154-159.	4.6	206
61	The Dileucine Motif Within the Tail of MPR46 is Required for Sorting of the Receptor in Endosomes. Traffic, 2000, 1, 631-640.	1.3	49
62	The R-SNARE Endobrevin/VAMP-8 Mediates Homotypic Fusion of Early Endosomes and Late Endosomes. Molecular Biology of the Cell, 2000, 11, 3289-3298.	0.9	145
63	Activation and Oligomerization of Aspartylglucosaminidase. Journal of Biological Chemistry, 1998, 273, 25320-25328.	1.6	40
64	Large-scale purification and preliminary X-ray diffraction studies of human aspartylglucosaminidase. , 1996, 24, 253-258.		10
65	Ser72Pro active-site disease mutation in human lysosomal aspartylglucosaminidase: abnormal intracellular processing and evidence for extracellular activation. Human Molecular Genetics, 1996, 5, 737-743.	1.4	25
66	Primary Folding of Aspartylglucosaminidase. Journal of Biological Chemistry, 1996, 271, 21340-21344.	1.6	33
67	Three-dimensional structure of human lysosomal aspartylglucosaminidase. Nature Structural and Molecular Biology, 1995, 2, 1102-1108.	3.6	169
68	Intracellular Sorting of Aspartylglucosaminidase: The Role of <i>N</i> -Linked Oligosaccharides and Evidence of Man-6-P-Independent Lysosomal Targeting. DNA and Cell Biology, 1995, 14, 305-312.	0.9	39
69	Immediate Interaction between the Nascent Subunits and Two Conserved Amino Acids Trp34 and Thr206 Are Needed for the Catalytic Activity of Aspartylglucosaminidase. Journal of Biological Chemistry, 1995, 270, 4903-4907.	1.6	26