Hideki Abe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6411563/publications.pdf

Version: 2024-02-01

176

all docs

169 5,973 39
papers citations h-index

176

docs citations

176 8249 times ranked citing authors

85541

71

g-index

#	Article	IF	CITATIONS
1	Charge partitioning by intertwined metal-oxide nano-architectural networks for the photocatalytic dry reforming of methane. Chem Catalysis, 2022, 2, 321-329.	6.1	9
2	Gasâ€Phase Photoelectrocatalysis Mediated by Oxygen Ions for Uphill Conversion of Greenhouse Gases. ChemPhotoChem, 2021, 5, 275-281.	3.0	7
3	Nanoporous ultra-high-entropy alloys containing fourteen elements for water splitting electrocatalysis. Chemical Science, 2021, 12, 11306-11315.	7.4	88
4	Active site separation of photocatalytic steam reforming of methane using a gas-phase photoelectrochemical system. Chemical Communications, 2021, 57, 8007-8010.	4.1	7
5	Tracking the emergence of epitaxial metal–oxide interfaces from precursor alloys. Nanoscale, 2021, 13, 18987-18995.	5.6	2
6	Quantitative analysis of 3D structures in metal-oxide composites. Microscopy and Microanalysis, 2021, 27, 2974-2975.	0.4	0
7	Growth mechanism of periodic nanopattern in metal-oxide composites. Microscopy and Microanalysis, 2021, 27, 2324-2325.	0.4	0
8	Topological trends in ionic transport through metal-oxide composites. Applied Physics Letters, 2021, 118, 054102.	3.3	4
9	In Situ TEM Study of Rh Particle Sintering for Three-Way Catalysts in High Temperatures. Catalysts, 2021, 11, 19.	3.5	6
10	Visible-Light-Induced CO ₂ Reduction by Mixed-Valence Tin Oxide. ACS Applied Energy Materials, 2021, 4, 13415-13419.	5.1	11
11	Correlation between the Charge-Transport Properties and the 3D-Phase Connectivities in Patterned Pt/CeO ₂ Nanostructured Composites: Implications for Solid-Oxide Fuel Cells. ACS Applied Nano Materials, 2021, 4, 13602-13611.	5.0	1
12	Photocatalysis and hydrogen production from water solution. , 2020, , 555-577.		0
13	Metal Carbide as A Lightâ€Harvesting and Anticoking Catalysis Support for Dry Reforming of Methane. Global Challenges, 2020, 4, 1900067.	3.6	17
14	Saloplastics as multiresponsive ion exchange reservoirs and catalyst supports. Journal of Materials Chemistry A, 2020, 8, 17713-17724.	10.3	15
15	Intermetallic Pd \cdot sub \cdot 3 \cdot /sub \cdot \cdot 1 \cdot X \cdot /1 \cdot 1 \cdot 1 and Zr) nanocrystals for electro-oxidation of alcohols and formic acid in alkaline and acidic media. Science and Technology of Advanced Materials, 2020, 21, 573-583.	6.1	10
16	Active faceted nanoporous ruthenium for electrocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 19788-19792.	10.3	19
17	Elastoresistance measurements on <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>CaKFe</mml:mi><mm <mml:math="" and="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>KCa</mml:mi><mml:mi></mml:mi></mml:msub></mml:mrow></mm></mml:msub></mml:mrow></mmi:math>	3.2	14
18	NiYAl-Derived Nanoporous Catalysts for Dry Reforming of Methane. Materials, 2020, 13, 2044.	2.9	1

#	Article	IF	CITATIONS
19	Intertwined Nickel and Magnesium Oxide Rival Precious Metals for Catalytic Reforming of Greenhouse Gases. Advanced Sustainable Systems, 2020, 4, 2000041.	5.3	2
20	Visible-light-driven dry reforming of methane using a semiconductor-supported catalyst. Chemical Communications, 2020, 56, 4611-4614.	4.1	46
21	Photocatalytic uphill conversion of natural gas beyond the limitation of thermal reaction systems. Nature Catalysis, 2020, 3, 148-153.	34.4	194
22	Mesoporous Rh Emerging from Nanophaseâ€separated Rh‥ Alloy. Chemistry - an Asian Journal, 2019, 14, 2802-2805.	3.3	8
23	Constructing Sn(<scp>ii</scp>)-doped SrNb ₂ O ₆ for visible light response driven H ₂ and O ₂ evolution from water. Catalysis Science and Technology, 2019, 9, 3619-3622.	4.1	4
24	Unique defect structure and advantageous vortex pinning properties in superconducting CaKFe4As4. Npj Quantum Materials, 2019, 4, .	5.2	43
25	Photocatalytic Partial Oxidation of Methane on Palladiumâ€Loaded Strontium Tantalate. Solar Rrl, 2019, 3, 1900076.	5.8	15
26	Large and significantly anisotropic critical current density induced by planar defects in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">CaKFe</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">As</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:mrow></mml:math>	3.2	42
27	single crystals. Physical Review B, 2019, 99, . Topologically immobilized catalysis centre for long-term stable carbon dioxide reforming of methane. Chemical Science, 2019, 10, 3701-3705.	7.4	27
28	CO2 oxidative coupling of methane using an earth-abundant CaO-based catalyst. Scientific Reports, 2019, 9, 15454.	3.3	14
29	Synergistic photothermal and photochemical partial oxidation of methane over noble metals incorporated in mesoporous silica. Chemical Communications, 2019, 55, 13765-13768.	4.1	19
30	A Cu–Zn nanoparticle promoter for selective carbon dioxide reduction and its application in visible-light-active Z-scheme systems using water as an electron donor. Chemical Communications, 2018, 54, 3947-3950.	4.1	28
31	Light-promoted conversion of greenhouse gases over plasmonic metal–carbide nanocomposite catalysts. Materials Chemistry Frontiers, 2018, 2, 580-584.	5.9	20
32	Mesoporous Bimetallic RhCu Alloy Nanospheres Using a Sophisticated Soft-Templating Strategy. Chemistry of Materials, 2018, 30, 428-435.	6.7	39
33	Nanoporous Nickel Composite Catalyst for the Dry Reforming of Methane. ACS Omega, 2018, 3, 16651-16657.	3.5	9
34	Controlled synthesis of Pt nanoparticle supported TiO ₂ nanorods as efficient and stable electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 23435-23444.	10.3	55
35	Design of p-type transparent conducting oxides Sn ₂ GeO ₄ by an <i>ab initio</i> evolutionary structure search. Journal of Materials Chemistry C, 2018, 6, 11202-11208.	5.5	11
36	Integrated tuneable synthesis of liquid fuels via Fischer–Tropsch technology. Nature Catalysis, 2018, 1, 787-793.	34.4	300

#	Article	IF	Citations
37	Photo-assisted Dry Reforming of Methane over Strontium Titanate. Chemistry Letters, 2018, 47, 935-937.	1.3	19
38	Synthesis of Metastable Au-Fe Alloy Using Ordered Nanoporous Silica as a Hard Template. Metals, 2018, 8, 17.	2.3	5
39	Sintering-Resistant Nanoparticles in Wide-Mouthed Compartments for Sustained Catalytic Performance. Scientific Reports, 2017, 7, 41773.	3.3	44
40	Hierarchical SnO2 Nanostructure with High Energy {113} Facet as Pt-Support for Improved Oxygen Reduction Reaction. Journal of Nanoscience and Nanotechnology, 2017, 17, 2929-2936.	0.9	1
41	Selective electro- or photo-reduction of carbon dioxide to formic acid using a Cu–Zn alloy catalyst. Journal of Materials Chemistry A, 2017, 5, 12113-12119.	10.3	92
42	Mesoporous metallic rhodium nanoparticles. Nature Communications, 2017, 8, 15581.	12.8	214
43	Dealloyed Nanoporous Pt-Based Alloys as High Performance Anode Catalysts for Direct Alcohol Fuel Cells. Journal of Nanoscience and Nanotechnology, 2017, 17, 2991-2998.	0.9	2
44	Synthesis of Single Phase Sn ₃ O ₄ : Native Visible-Light-Sensitive Photocatalyst with High Photocatalytic Performance for Hydrogen Evolution. Journal of Nanoscience and Nanotechnology, 2017, 17, 3454-3459.	0.9	15
45	Nanophase-separated Ni ₃ Nb as an automobile exhaust catalyst. Chemical Science, 2017, 8, 3374-3378.	7.4	18
46	Mixed-valence NaSb ₃ O ₇ support toward improved electrocatalytic performance in the oxygen-reduction reaction. Journal of Materials Chemistry A, 2017, 5, 1667-1671.	10.3	24
47	Pt Nanoparticles Supported on Mesoporous CeO ₂ Nanostructures Obtained through Green Approach for Efficient Catalytic Performance toward Ethanol Electro-oxidation. ACS Sustainable Chemistry and Engineering, 2017, 5, 11290-11299.	6.7	63
48	N2O-emission-free exhaust remediation by Rh-NbOx nanocomposites developed from Rh3Nb alloy precursor. RSC Advances, 2017, 7, 9628-9631.	3.6	7
49	Visible light photocatalytic activities of template free porous graphitic carbon nitride—BiOBr composite catalysts towards the mineralization of reactive dyes. Applied Surface Science, 2017, 426, 1030-1045.	6.1	47
50	In-Situ TEM Study of a Nanoporous Ni–Co Catalyst Used for the Dry Reforming of Methane. Metals, 2017, 7, 406.	2.3	14
51	Pt Decorated Free-Standing TiO $<$ sub $>$ 2 $<$ /sub $>$ Nanotube Arrays: Highly Active and Durable Electrocatalyst for Oxygen Reduction and Methanol Oxidation Reactions. Journal of Nanoscience and Nanotechnology, 2016, 16, 8269-8278.	0.9	10
52	Plasmon-mediated photothermal conversion by TiN nanocubes toward CO oxidation under solar light illumination. RSC Advances, 2016, 6, 110566-110570.	3.6	17
53	Nanostructured polymeric yolk–shell capsules: a versatile tool for hierarchical nanocatalyst design. Journal of Materials Chemistry A, 2016, 4, 9850-9857.	10.3	14
54	Earthâ€Abundant and Durable Nanoporous Catalyst for Exhaustâ€Gas Conversion. Advanced Functional Materials, 2016, 26, 1609-1616.	14.9	18

#	Article	IF	CITATIONS
55	CO tolerance of Pt/FeOxcatalyst in both thermal catalytic H2oxidation and electrochemical CO oxidation: the effect of Pt deficit electron state. Physical Chemistry Chemical Physics, 2016, 18, 29607-29615.	2.8	7
56	Low-Temperature Catalytic Performance of Nanostructured CuO. Nanoscience and Nanotechnology Letters, 2016, 8, 220-225.	0.4	0
57	Atomic architectonics, nanoarchitectonics and microarchitectonics for strategies to make junk materials work as precious catalysts. CrystEngComm, 2016, 18, 6770-6778.	2.6	32
58	Bonding and Electron Energy-Level Alignment at Metal/TiO ₂ Interfaces: A Density Functional Theory Study. Journal of Physical Chemistry C, 2016, 120, 5549-5556.	3.1	45
59	Catalytic nanoarchitectonics for environmentally compatible energy generation. Materials Today, 2016, 19, 12-18.	14.2	163
60	Tailoring the surface-oxygen defects of a tin dioxide support towards an enhanced electrocatalytic performance of platinum nanoparticles. Physical Chemistry Chemical Physics, 2016, 18, 5932-5937.	2.8	15
61	CHAPTER 7. Halloysite and Related Mesoporous Carriers for Advanced Catalysis and Drug Delivery. RSC Smart Materials, 2016, , 207-222.	0.1	2
62	Effects of cation concentration on photocatalytic performance over magnesium vanadates. APL Materials, 2015, 3, 104405.	5.1	11
63	Enhanced Activity for Oxygen Reduction Reactions by Carbon-supported High-index-facet Pt-Ti Nanoparticles. Electrochemistry, 2015, 83, 7-11.	1.4	8
64	Synthesis and magnetic characterization of Sr-based Ni2X-type hexaferrite. AIP Advances, 2015, 5, .	1.3	16
65	Activated interiors of clay nanotubes for agglomeration-tolerant automotive exhaust remediation. Journal of Materials Chemistry A, 2015, 3, 6614-6619.	10.3	77
66	Promoted C–C bond cleavage over intermetallic TaPt ₃ catalyst toward low-temperature energy extraction from ethanol. Energy and Environmental Science, 2015, 8, 1685-1689.	30.8	43
67	Novel visible-light sensitive vanadate photocatalysts for water oxidation: implications from density functional theory calculations. Journal of Materials Chemistry A, 2015, 3, 10720-10723.	10.3	27
68	Low-temperature synthesis of copper oxide (CuO) nanostructures with temperature-controlled morphological variations. Ceramics International, 2015, 41, 9426-9432.	4.8	16
69	Covalency-reinforced oxygen evolution reaction catalyst. Nature Communications, 2015, 6, 8249.	12.8	393
70	A dual soft-template synthesis of hollow mesoporous silica spheres decorated with Pt nanoparticles as a CO oxidation catalyst. RSC Advances, 2015, 5, 97928-97933.	3.6	11
71	Correlation between the surface electronic structure and CO-oxidation activity of Pt alloys. Physical Chemistry Chemical Physics, 2015, 17, 4879-4887.	2.8	37
72	Crystallographic and magnetic properties of Cu2U-type hexaferrite. Journal of Magnetism and Magnetic Materials, 2015, 375, 54-60.	2.3	17

#	Article	IF	Citations
73	Facile route for the preparation of ordered intermetallic Pt3Pb–PtPb core–shell nanoparticles and its enhanced activity for alkaline methanol and ethanol oxidation. Journal of Power Sources, 2015, 273, 990-998.	7.8	33
74	Lowâ€Temperature Remediation of NO Catalyzed by Interleaved CuO Nanoplates. Advanced Materials, 2014, 26, 4481-4485.	21.0	79
75	Band-Gap Engineering of NaNbO ₃ for Photocatalytic H ₂ Evolution with Visible Light. International Journal of Photoenergy, 2014, 2014, 1-6.	2.5	9
76	Interleaved Mesoporous Copper for the Anode Catalysis in Direct Ammonium Borane Fuel Cells. Journal of Nanoscience and Nanotechnology, 2014, 14, 4443-4448.	0.9	1
77	Photocatalytic Water Splitting under Visible Light by Mixed-Valence Sn ₃ O ₄ . ACS Applied Materials & amp; Interfaces, 2014, 6, 3790-3793.	8.0	148
78	NbPt ₃ Intermetallic Nanoparticles: Highly Stable and COâ€Tolerant Electrocatalyst for Fuel Oxidation. ChemElectroChem, 2014, 1, 728-732.	3.4	31
79	Charge-Order Melting in Charge-Disproportionated Perovskite CeCu ₃ Fe ₄ O ₁₂ . Inorganic Chemistry, 2014, 53, 11794-11801.	4.0	29
80	Gold photosensitized SrTiO3 for visible-light water oxidation induced by Au interband transitions. Journal of Materials Chemistry A, 2014, 2, 9875.	10.3	106
81	Polymeric micelle assembly for the direct synthesis of functionalized mesoporous silica with fully accessible Pt nanoparticles toward an improved CO oxidation reaction. Chemical Communications, 2014, 50, 9101-9104.	4.1	24
82	Long-term, stable, and improved oxygen-reduction performance of titania-supported PtPb nanoparticles. Catalysis Science and Technology, 2014, 4, 1436-1445.	4.1	25
83	Visible-light photodecomposition of acetaldehyde by TiO ₂ -coated gold nanocages: plasmon-mediated hot electron transport via defect states. Chemical Communications, 2014, 50, 15553-15556.	4.1	33
84	Constructing cubic–orthorhombic surface-phase junctions of NaNbO ₃ towards significant enhancement of CO ₂ photoreduction. Journal of Materials Chemistry A, 2014, 2, 5606-5609.	10.3	93
85	Synthesis and electrocatalytic performance of atomically ordered nickel carbide (Ni ₃ C) nanoparticles. Chemical Communications, 2014, 50, 6451-6453.	4.1	34
86	Stimulation of Electro-oxidation Catalysis by Bulk-Structural Transformation in Intermetallic ZrPt ₃ Nanoparticles. ACS Applied Materials & Interfaces, 2014, 6, 16124-16130.	8.0	35
87	Plasmonic Janusâ€Composite Photocatalyst Comprising Au and C–TiO ₂ for Enhanced Aerobic Oxidation over a Broad Visibleâ€Light Range. Advanced Functional Materials, 2014, 24, 7754-7762.	14.9	83
88	Visible light induced decomposition of organic compounds on WO3 loaded PtPb co-catalysts. Catalysis Communications, 2014, 56, 96-100.	3.3	8
89	Valence Transitions in Negative Thermal Expansion Material SrCu ₃ Fe ₄ O ₁₂ . Inorganic Chemistry, 2014, 53, 10563-10569.	4.0	43
90	Superior CO Catalytic Oxidation on Novel Pt/Clay Nanocomposites. ACS Applied Materials & Samp; Interfaces, 2013, 5, 11613-11617.	8.0	17

#	Article	IF	Citations
91	Enzyme nanoarchitectonics: organization and device application. Chemical Society Reviews, 2013, 42, 6322.	38.1	376
92	Synthesis of Mesoporous Pt–Ru Alloy Particles with Uniform Sizes by Sophisticated Hardâ€∓emplating Method. Chemistry - an Asian Journal, 2013, 8, 902-907.	3.3	25
93	Hydrogen-bond-driven â€~homogeneous intercalation' for rapid, reversible, and ultra-precise actuation of layered clay nanosheets. Chemical Communications, 2013, 49, 3631.	4.1	23
94	Naked-Eye Discrimination of Methanol from Ethanol Using Composite Film of Oxoporphyrinogen and Layered Double Hydroxide. ACS Applied Materials & Double Hydroxide. ACS Applied Materials & Double Hydroxide.	8.0	50
95	Immobilization of Cesium in Titanium Oxides. Hyomen Kagaku, 2013, 34, 149-153.	0.0	0
96	Wet Chemical Synthesis of Ni-Al Nanoparticles at Ambient Condition. Advanced Materials Research, 2012, 557-559, 442-447.	0.3	0
97	Electronic transitions in CePd2Si2studied by resonant x-ray emission spectroscopy at high pressures and low temperatures. Physical Review B, 2012, 86, .	3.2	12
98	Materials nanoarchitectonics for environmental remediation and sensing. Journal of Materials Chemistry, 2012, 22, 2369-2377.	6.7	156
99	Post-synthesis dispersion of metal nanoparticles by poly(amidoamine) dendrimers: size-selective inclusion, water solubilization, and improved catalytic performance. Chemical Communications, 2012, 48, 7441.	4.1	9
100	Colorimetric detection of trace water in tetrahydrofuran using N,N′-substituted oxoporphyrinogens. Chemical Communications, 2012, 48, 3933.	4.1	45
101	Synthesis of Intermetallic Ni–Al Nanoparticles by Wet Chemistry Synthesis of Niacac2 and Alcl3 Precursors. , 2012, , 179-186.		0
102	MgB2ナノワã,ãƒãƒ¼ï¼šæº¶èžå¡©é›»è§£å•æ^·ナノ構é€Â·è¶…電導特性. Electrochemistry, 2011	., 7194,897-	90 1 .
103	Effective Use of Platinum Group Metals. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2011, 75, 10-20.	0.4	8
104	Influence of pH on dendritic structure of strongly fluorescent persulfate-treated poly(amidoamine) dendrimer. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 224, 102-109.	3.9	15
105	Synthesis and Catalytic Performance of Intermetallic Nanoparicles. Materia Japan, 2010, 49, 314-316.	0.1	1
106	Non-stoichiometric FexWN2: Leaching of Fe from layer-structured FeWN2. Journal of Solid State Chemistry, 2010, 183, 327-331.	2.9	15
107	Structural refinement of T2Mo3O8 (T=Mg, Co, Zn and Mn) and anomalous valence of trinuclear molybdenum clusters in Mn2Mo3O8. Journal of Solid State Chemistry, 2010, 183, 379-384.	2.9	19
108	Open-Mouthed Metallic Microcapsules: Exploring Performance Improvements at Agglomeration-Free Interiors. Journal of the American Chemical Society, 2010, 132, 14415-14417.	13.7	89

#	Article	IF	CITATIONS
109	Fabrication and surface characterization of single crystal PtBi and PtPb (100) and (001) surfaces. Physical Chemistry Chemical Physics, 2010, 12, 12978.	2.8	13
110	Pt ₃ Ti Nanoparticles: Fine Dispersion on SiO ₂ Supports, Enhanced Catalytic CO Oxidation, and Chemical Stability at Elevated Temperatures. Langmuir, 2010, 26, 11446-11451.	3.5	39
111	Enantioselective Total Synthesis of (â^')â€Candelalides A, B and C: Potential Kv1.3 Blocking Immunosuppressive Agents. Chemistry - A European Journal, 2009, 15, 2826-2845.	3.3	36
112	Surface characterization of ordered intermetallic PtBi(001) surfaces by ultra-high vacuum–electrochemistry (UHV–EC). Surface Science, 2008, 602, 1830-1836.	1.9	10
113	Observation of Energy Gap in FeGa ₃ . Journal of the Physical Society of Japan, 2008, 77, 024705.	1.6	34
114	Electrocatalytic Performance of Fuel Oxidation by Pt ₃ Ti Nanoparticles. Journal of the American Chemical Society, 2008, 130, 5452-5458.	13.7	157
115	Pressure effect on the electrical resistance of SrSi2. Intermetallics, 2007, 15, 956-960.	3.9	13
116	Enantioselective Total Synthesis of (+)â€Ottelione A, (â^')â€Ottelione B, (+)â€3â€ <i>epi</i> epiepii>â€Ottelione A and Preliminary Evaluation of Their Antitumor Activity. Chemistry - A European Journal, 2007, 13, 9866-9881.	3.3	21
117	Lattice constants and electrical resistivity of C32-type LaAl2â°'xSix (0.27⩽x⩽0.56). Physica B: Condensed Matter, 2006, 383, 76-77.	2.7	2
118	Electrochemical immobilization of Cs in single-crystalline SYNROC. Journal of Solid State Chemistry, 2006, 179, 1521-1524.	2.9	18
119	Structure, magnetism and transport of the perovskite manganites Ln0.5Ca0.5MnO3 (Ln=Ho, Er, Tm, Yb) Tj ETQq1	1.0.7843	14 rgBT /O\
120	Electroplating of the superconductive boride MgB2 from molten salts. Journal of Physics and Chemistry of Solids, 2005, 66, 406-409.	4.0	8
121	Electrical properties of polycrystalline SrSi2. Applied Physics Letters, 2005, 86, 032102.	3.3	45
122	Superconducting properties of MgB2 films electroplated to stainless steel substrates. Applied Physics Letters, 2004, 85, 6197-6199.	3.3	21
123	High-field magnetization and other physical properties of Ce2T3X5 compounds (T=Pd, Rh and Cu; X=Si) Tj ETQq1	1 ₂ 0,78431	4 rgBT /Ov
124	Electrical Properties of Single-Crystalline CaAl2Si2 ChemInform, 2004, 35, no.	0.0	0
125	Neutron diffraction and X-ray absorption study of CaMn0.6Ru0.4O3. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E609-E611.	2.3	4
126	Electrochemical preparation of single-crystalline Cr2O3 from molten salts. Journal of Crystal Growth, 2004, 267, 42-46.	1.5	2

#	Article	IF	CITATIONS
127	Electrical Properties of Single-Crystalline CaAl2Si2. Inorganic Chemistry, 2004, 43, 5186-5188.	4.0	31
128	Structure and magnetism of Eu 1â^'x Dy x TiO 3. Journal of Solid State Chemistry, 2003, 171, 345-348.	2.9	8
129	Electrochemical synthesis of superconductive MgB2 from molten salts. Physica C: Superconductivity and Its Applications, 2003, 388-389, 113-114.	1.2	6
130	Doping effects of Ru inL0.5Sr0.5CoO3(L=La,Pr, Nd, Sm, and Eu). Physical Review B, 2003, 67, .	3.2	35
131	Structure, magnetism and transport of La2NiRuO6. Journal of Alloys and Compounds, 2003, 348, 236-240.	5.5	18
132	Superconducting properties of single-crystallineCa(Al0.5,Si0.5)2:A ternary silicide with theAlB2-type structure. Physical Review B, 2003, 68, .	3.2	39
133	Magnetization Process of anS=1/2 Tetramer Chain with Ferromagnetic–Antiferromagnetic Bond Alternating Interactions. Journal of the Physical Society of Japan, 2003, 72, 943-946.	1.6	21
134	Magnetic Properties of Ce2Sc3Ge4Single Crystal. Journal of the Physical Society of Japan, 2003, 72, 947-950.	1.6	1
135	Superconductivity of Ca(Al0.5,Si0.5)2, a ternary silicide with the AlB2-type structure. Applied Physics Letters, 2002, 80, 1019-1021.	3.3	120
136	Field-induced magnetic ordering in the quantum spin systemKCuCl3. Physical Review B, 2002, 66, .	3.2	91
137	Electrical transport properties of bulk MgB2materials synthesized by electrolysis on fused mixtures of MgCl2, NaCl, KCl and MgB2O4. Superconductor Science and Technology, 2002, 15, L25-L27.	3.5	9
138	Electrochemical Synthesis of Superconductive Boride MgB2 from Molten Salts. Japanese Journal of Applied Physics, 2002, 41, L685-L687.	1.5	6
139	Single Crystalline MgB ₂ Superconductor. Journal of the Physical Society of Japan, 2002, 71, 320-322.	1.6	2
140	Antiferromagnetic Order in Bi4Cu3V2O14 with Novel Spin Chain. Journal of the Physical Society of Japan, 2002, 71, 1161-1165.	1.6	25
141	Magnetic behavior of CeTi1â^'V O3. Journal of Alloys and Compounds, 2002, 343, 199-203.	5. 5	8
142	High-Field Magnetization of Single Crystalline TbRh2Si2. Journal of the Physical Society of Japan, 2002, 71, 1565-1569.	1.6	3
143	Magnetism and transport of Ln0.5Sr0.5CoO3 (Ln=Pr, Nd, Sm, Eu and Gd). Journal of Magnetism and Magnetic Materials, 2002, 239, 85-87.	2.3	15
144	Magnetic Properties of LnMnO3 (Ln=Ho, Er, Tm, Yb, and Lu). Journal of Solid State Chemistry, 2002, 165, 131-135.	2.9	46

#	Article	IF	CITATIONS
145	Structure and Electrical Transport Property of a Silicopnictide ZrCuSiP. Journal of Solid State Chemistry, 2002, 165, 372-374.	2.9	7
146	Complex magnetic phase diagram of CeRh2Ge2. Physica B: Condensed Matter, 2002, 312-313, 253-255.	2.7	3
147	Superconductivity of ternary silicides A(Gax,Si1â^'x)2 (A=Ca, Sr, and Ba). Physica C: Superconductivity and Its Applications, 2002, 377, 96-100.	1.2	40
148	Superconductivity of MI(MII0.5,Si0.5)2 (MI=Sr and Ba, MII=Al and Ga), ternary silicides with the AlB2-type structure. Physica C: Superconductivity and Its Applications, 2002, 382, 361-366.	1.2	58
149	Single-crystal growth of silver-lead oxide Ag5Pb2O6 from fused nitrates. Journal of Crystal Growth, 2002, 241, 347-351.	1.5	10
150	Magnetic properties and resistivity of ternary compounds CeNi2X2 (X=Sb, As, P). Journal of Alloys and Compounds, 2001, 323-324, 520-523.	5 . 5	6
151	Magnetic Properties of LnTi0.5V0.5O3 (Ln=Ce and Pr). Journal of Solid State Chemistry, 2001, 156, 452-457.	2.9	2
152	Ferromagnetism in ErTi2Ga4. Journal of the Physical Society of Japan, 2001, 70, 3042-3045.	1.6	9
153	Anisotropy of superconductivity from MgB2 single crystals. Applied Physics Letters, 2001, 79, 2779-2781.	3.3	207
154	Superconductivity of Ternary Silicide with the AlB2-Type Structure Sr(Ga0.37, Si0.63)2. Physical Review Letters, 2001, 87, 077003.	7.8	93
155	Preparation and Structure of a New Germanium Clathrate, Ba24Ge100. Journal of Solid State Chemistry, 2000, 151, 117-121.	2.9	92
156	Magnetic Properties of Ce1â^'xNdxTiO3 and Some Solid Solution Orthotitanates Ln1â^'xLn′xTiO3 (Ln and) Tj E	TQq0 0 0 1	rgBT /Overloo
157	Magnetic and Electrical Resistivity Studies of Pr1-xTiO3. Japanese Journal of Applied Physics, 2000, 39, 484.	1.5	0
158	Magnetic properties of induced ferromagnet PrPtAl. Journal of Applied Physics, 1999, 85, 4480-4481.	2.5	5
159	High-field magnetization of CeRh2(Si1â^'xGex)2. Physica B: Condensed Matter, 1999, 259-261, 56-57.	2.7	O
160	Magnetic study of the mixed orthotitanate La1â^'xSmxTiO3 (0≠¦ x≠¦ 1). Journal of Alloys and Compounds, 19290, 236-243.	999 5.5	8
161	Magnetic properties of CeRh2Si2 and CePd2Si2 single crystals. Journal of Magnetism and Magnetic Materials, 1998, 177-181, 479-480.	2.3	21
162	de Haas-van Alphen Effect Study of CeRh2Si2. Journal of the Physical Society of Japan, 1998, 67, 1852-1855.	1.6	5

#	Article	IF	CITATION
163	Successive Field Induced Magnetic Phase Transitions of Heavy Fermion Compound CeRh2Si2. Journal of the Physical Society of Japan, 1997, 66, 2525-2526.	1.6	8
164	Identification of the new intermetallic compounds Y3Ni4B4C3 and Y1Ni1B1C1; related homologous series (LnC)m(B–Ni2–B)n. Physica C: Superconductivity and Its Applications, 1997, 291, 332-340.	1.2	18
165	Scanning Tunneling Microscope Observation of the Metal-Adsorbed Layered Semiconductor Surfaces. Japanese Journal of Applied Physics, 1995, 34, 3342-4445.	1.5	7
166	Heteroepitaxial Growth of Layered GaSe Films on GaAs(001) Surfaces. Japanese Journal of Applied Physics, 1993, 32, L1444-L1447.	1.5	14
167	Characterization of Epitaxial Films of Layered Materials Using Moiré Images of Scanning Tunneling Microscope. Japanese Journal of Applied Physics, 1993, 32, 2945-2949.	1.5	22
168	Hetero-epitaxy of layered compound semiconductor GaSe onto GaAs surfaces for very effective passivation of nanometer structures. Surface Science, 1992, 267, 43-46.	1.9	30
169	Heteroepitaxy of Layered Semiconductor GaSe on a GaAs(111)B Surface. Japanese Journal of Applied Physics, 1991, 30, L1352-L1354.	1.5	63