
Francisco Salinas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6411120/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A High-Definition View of Functional Genetic Variation from Natural Yeast Genomes. Molecular Biology and Evolution, 2014, 31, 872-888.	8.9	328
2	Revealing the genetic structure of a trait by sequencing a population under selection. Genome Research, 2011, 21, 1131-1138.	5.5	263
3	High-Resolution Mapping of Complex Traits with a Four-Parent Advanced Intercross Yeast Population. Genetics, 2013, 195, 1141-1155.	2.9	164
4	The Genetic Basis of Natural Variation in Oenological Traits in Saccharomyces cerevisiae. PLoS ONE, 2012, 7, e49640.	2.5	107
5	Natural variation in non-coding regions underlying phenotypic diversity in budding yeast. Scientific Reports, 2016, 6, 21849.	3.3	100
6	Mapping Genetic Variants Underlying Differences in the Central Nitrogen Metabolism in Fermenter Yeasts. PLoS ONE, 2014, 9, e86533.	2.5	96
7	Concerted Evolution of Life Stage Performances Signals Recent Selection on Yeast Nitrogen Use. Molecular Biology and Evolution, 2015, 32, 153-161.	8.9	86
8	Indirect monitoring of TORC1 signalling pathway reveals molecular diversity among different yeast strains. Yeast, 2019, 36, 65-74.	1.7	71
9	Clonal Heterogeneity Influences the Fate of New Adaptive Mutations. Cell Reports, 2017, 21, 732-744.	6.4	70
10	<i>RIM15</i> antagonistic pleiotropy is responsible for differences in fermentation and stress response kinetics in budding yeast. FEMS Yeast Research, 2016, 16, fow021.	2.3	67
11	Extensive Recombination of a Yeast Diploid Hybrid through Meiotic Reversion. PLoS Genetics, 2016, 12, e1005781.	3.5	60
12	Genetic variants of TORC1 signaling pathway affect nitrogen consumption in Saccharomyces cerevisiae during alcoholic fermentation. PLoS ONE, 2019, 14, e0220515.	2.5	55
13	KAE1 Allelic Variants Affect TORC1 Activation and Fermentation Kinetics in Saccharomyces cerevisiae. Frontiers in Microbiology, 2019, 10, 1686.	3.5	49
14	ldentification of genes related to nitrogen uptake in wine strains of Saccharomyces cerevisiae. World Journal of Microbiology and Biotechnology, 2012, 28, 1107-1113.	3.6	43
15	Optogenetic switches for light-controlled gene expression in yeast. Applied Microbiology and Biotechnology, 2017, 101, 2629-2640.	3.6	35
16	Powerful decomposition of complex traits in a diploid model. Nature Communications, 2016, 7, 13311.	12.8	34
17	Fungal Light-Oxygen-Voltage Domains for Optogenetic Control of Gene Expression and Flocculation in Yeast. MBio, 2018, 9, .	4.1	34
18	Taqman real-time PCR for the detection and enumeration of Saccharomyces cerevisiae in wine. Food Microbiology, 2009, 26, 328-332.	4.2	33

FRANCISCO SALINAS

#	Article	IF	CITATIONS
19	GPD1 and ADH3 Natural Variants Underlie Glycerol Yield Differences in Wine Fermentation. Frontiers in Microbiology, 2018, 9, 1460.	3.5	31
20	Comparison of Phylogenetic Tree Topologies for Nitrogen Associated Genes Partially Reconstruct the Evolutionary History of Saccharomyces cerevisiae. Microorganisms, 2020, 8, 32.	3.6	26
21	The rise and shine of yeast optogenetics. Yeast, 2021, 38, 131-146.	1.7	21
22	Genomic and phenotypic comparison between similar wine yeast strains ofSaccharomyces cerevisiaefrom different geographic origins. Journal of Applied Microbiology, 2010, 108, 1850-1858.	3.1	18
23	Transcriptional Activity and Protein Levels of Horizontally Acquired Genes in Yeast Reveal Hallmarks of Adaptation to Fermentative Environments. Frontiers in Genetics, 2020, 11, 293.	2.3	16
24	ATG18 and FAB1 Are Involved in Dehydration Stress Tolerance in Saccharomyces cerevisiae. PLoS ONE, 2015, 10, e0119606.	2.5	12
25	Modular and Molecular Optimization of a LOV (Light–Oxygen–Voltage)-Based Optogenetic Switch in Yeast. International Journal of Molecular Sciences, 2021, 22, 8538.	4.1	8
26	A Saccharomyces eubayanus haploid resource for research studies. Scientific Reports, 2022, 12, 5976.	3.3	8
27	POLYMERASE CHAIN REACTION CONFIRMATORY METHOD FOR MICROBIOLOGICAL DETECTION OFBRETTANOMYCES BRUXELLENSISIN WINES. Journal of Rapid Methods and Automation in Microbiology, 2008, 16, 308-319.	0.4	6
28	Interactions between Core Elements of the Botrytis cinerea Circadian Clock Are Modulated by Light and Different Protein Domains. Journal of Fungi (Basel, Switzerland), 2022, 8, 486.	3.5	5
29	Cinnamic acid, ethanol and temperature interaction on coumarate decarboxylase activity and the relative expression of the putative cd gene in D. bruxellensis. Electronic Journal of Biotechnology, 2011, 14, .	2.2	4
30	GTR1 Affects Nitrogen Consumption and TORC1 Activity in Saccharomyces cerevisiae Under Fermentation Conditions. Frontiers in Genetics, 2020, 11, 519.	2.3	4
31	Differential Gene Expression and Allele Frequency Changes Favour Adaptation of a Heterogeneous Yeast Population to Nitrogen-Limited Fermentations. Frontiers in Microbiology, 2020, 11, 1204.	3.5	3
32	Total evidence or taxonomic congruence? A comparison of methods for combining biological evidence. Journal of Bioinformatics and Computational Biology, 2020, 18, 2050040.	0.8	2
33	12 Exploiting Fungal Photobiology as a Source of Novel Bio-blocks for Optogenetic Systems. , 2020, , 297-318.		0