
## **Oliver Gross**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6410647/publications.pdf Version: 2024-02-01



OLIVED CDOSS

| #  | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Lifelong effect of therapy in young patients with the <i>COL4A5</i> Alport missense variant p.(Gly624Asp): a prospective cohort study. Nephrology Dialysis Transplantation, 2022, 37, 2496-2504.                                                                | 0.7  | 16        |
| 2  | Anti-microRNA-21 Therapy on Top of ACE Inhibition Delays Renal Failure in Alport Syndrome Mouse<br>Models. Cells, 2022, 11, 594.                                                                                                                                | 4.1  | 17        |
| 3  | Clinical practice recommendations for the diagnosis and management of Alport syndrome in children, adolescents, and young adults–an update for 2020. Pediatric Nephrology, 2021, 36, 711-719.                                                                   | 1.7  | 70        |
| 4  | Precise variant interpretation, phenotype ascertainment, and genotype–phenotype correlation of children in the <scp>EARLY PROâ€TECT</scp> Alport trial. Clinical Genetics, 2021, 99, 143-156.                                                                   | 2.0  | 7         |
| 5  | Response to: Diagnosis of Alport syndrome, is there a role for skin biopsy?. Pediatric Nephrology, 2021,<br>36, 1031-1031.                                                                                                                                      | 1.7  | 0         |
| 6  | Mutations in PRDM15 Are a Novel Cause of Galloway-Mowat Syndrome. Journal of the American<br>Society of Nephrology: JASN, 2021, 32, 580-596.                                                                                                                    | 6.1  | 15        |
| 7  | Genotype–phenotype correlations and nephroprotective effects of RAAS inhibition in patients with autosomal recessive Alport syndrome. Pediatric Nephrology, 2021, 36, 2719-2730.                                                                                | 1.7  | 19        |
| 8  | Organoprotective Effects of Spironolactone on Top of Ramipril Therapy in a Mouse Model for Alport<br>Syndrome. Journal of Clinical Medicine, 2021, 10, 2958.                                                                                                    | 2.4  | 7         |
| 9  | Sodium-Glucose Cotransporter-2 Inhibitors in Patients with Hereditary Podocytopathies, Alport<br>Syndrome, and FSGS: A Case Series to Better Plan a Large-Scale Study. Cells, 2021, 10, 1815.                                                                   | 4.1  | 19        |
| 10 | Validation of a Prospective Urinalysis-Based Prediction Model for ICU Resources and Outcome of COVID-19 Disease: A Multicenter Cohort Study. Journal of Clinical Medicine, 2021, 10, 3049.                                                                      | 2.4  | 12        |
| 11 | Addressing the â€`hypoxia paradox' in severe COVID-19: literature review and report of four cases treated with erythropoietin analogues. Molecular Medicine, 2021, 27, 120.                                                                                     | 4.4  | 9         |
| 12 | Collagen IVα345 dysfunction in glomerular basement membrane diseases. I. Discovery of a COL4A3<br>variant in familial Goodpasture's and Alport diseases. Journal of Biological Chemistry, 2021, 296,<br>100590.                                                 | 3.4  | 19        |
| 13 | The importance of clinician, patient and researcher collaborations in Alport syndrome. Pediatric<br>Nephrology, 2020, 35, 733-742.                                                                                                                              | 1.7  | 15        |
| 14 | SARS-CoV-2 renal tropism associates with acute kidney injury. Lancet, The, 2020, 396, 597-598.                                                                                                                                                                  | 13.7 | 253       |
| 15 | Characterization of Sensorineural Hearing Loss in Children with Alport Syndrome. Life, 2020, 10, 360.                                                                                                                                                           | 2.4  | 7         |
| 16 | Multiorgan and Renal Tropism of SARS-CoV-2. New England Journal of Medicine, 2020, 383, 590-592.                                                                                                                                                                | 27.0 | 1,523     |
| 17 | COVID-19-associated nephritis: early warning for disease severity and complications?. Lancet, The, 2020, 395, e87-e88.                                                                                                                                          | 13.7 | 84        |
| 18 | A multicenter, randomized, placebo-controlled, double-blind phase 3 trial with open-arm comparison<br>indicates safety and efficacy of nephroprotective therapy with ramipril in children with Alport's<br>syndrome. Kidney International, 2020, 97, 1275-1286. | 5.2  | 94        |

| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Clinical trial recommendations for potential Alport syndrome therapies. Kidney International, 2020, 97, 1109-1116.                                                                                                                          | 5.2  | 7         |
| 20 | After ten years of follow-up, no difference between supportive care plus immunosuppression and supportive care alone in IgA nephropathy. Kidney International, 2020, 98, 1044-1052.                                                         | 5.2  | 103       |
| 21 | Genetische Ursachen und Therapie beim Alport-Syndrom. Medizinische Genetik, 2019, 30, 429-437.                                                                                                                                              | 0.2  | 0         |
| 22 | Expert consensus guidelines for the genetic diagnosis of Alport syndrome. Pediatric Nephrology, 2019,<br>34, 1175-1189.                                                                                                                     | 1.7  | 97        |
| 23 | The Hypomorphic Variant p.(Gly624Asp) in COL4A5 as a Possible Cause for an Unexpected Severe<br>Phenotype in a Family With X-Linked Alport Syndrome. Frontiers in Pediatrics, 2019, 7, 485.                                                 | 1.9  | 11        |
| 24 | Kidney Injury by Variants in the COL4A5 Gene Aggravated by Polymorphisms in Slit Diaphragm Genes<br>Causes Focal Segmental Glomerulosclerosis. International Journal of Molecular Sciences, 2019, 20,<br>519.                               | 4.1  | 13        |
| 25 | Identification of platelet-derived growth factor C as a mediator of both renal fibrosis and hypertension. Kidney International, 2019, 95, 1103-1119.                                                                                        | 5.2  | 14        |
| 26 | Alport syndrome: a unified classification of genetic disorders of collagen IV α345: a position paper of the Alport Syndrome Classification Working Group. Kidney International, 2018, 93, 1045-1051.                                        | 5.2  | 206       |
| 27 | Effects of Two Immunosuppressive Treatment Protocols for IgA Nephropathy. Journal of the American<br>Society of Nephrology: JASN, 2018, 29, 317-325.                                                                                        | 6.1  | 64        |
| 28 | Advances and unmet needs in genetic, basic and clinical science in Alport syndrome: report from the<br>2015 International Workshop on Alport Syndrome. Nephrology Dialysis Transplantation, 2017, 32,<br>gfw095.                            | 0.7  | 40        |
| 29 | Intestinal Dysbiosis, Barrier Dysfunction, and Bacterial Translocation Account for CKD–Related<br>Systemic Inflammation. Journal of the American Society of Nephrology: JASN, 2017, 28, 76-83.                                              | 6.1  | 196       |
| 30 | Prospective study on the potential of RAAS blockade to halt renal disease in Alport syndrome patients with heterozygous mutations. Pediatric Nephrology, 2017, 32, 131-137.                                                                 | 1.7  | 29        |
| 31 | The DESCARTES-Nantes survey of kidney transplant recipients displaying clinical operational tolerance<br>identifies 35 new tolerant patients and 34 almost tolerant patients. Nephrology Dialysis<br>Transplantation, 2016, 31, 1002-1013.  | 0.7  | 46        |
| 32 | Preclinical Alterations in the Serum of COL(IV)A3 <sup>–</sup> / <sup>–</sup> Mice as Early Biomarkers of Alport Syndrome. Journal of Proteome Research, 2015, 14, 5202-5214.                                                               | 3.7  | 11        |
| 33 | Intensive Supportive Care plus Immunosuppression in IgA Nephropathy. New England Journal of Medicine, 2015, 373, 2225-2236.                                                                                                                 | 27.0 | 516       |
| 34 | Effects of mycophenolate mofetil on kidney function and phosphorylation status of renal proteins in<br>Alport COL4A3-deficient mice. Proteome Science, 2014, 12, 56.                                                                        | 1.7  | 6         |
| 35 | Antifibrotic, nephroprotective effects of paricalcitol versus calcitriol on top of ACE-inhibitor<br>therapy in the COL4A3 knockout mouse model for progressive renal fibrosis. Nephrology Dialysis<br>Transplantation, 2014, 29, 1012-1019. | 0.7  | 27        |
| 36 | Alport syndrome from bench to bedside: the potential of current treatment beyond RAAS blockade and the horizon of future therapies. Nephrology Dialysis Transplantation, 2014, 29, iv124-iv130.                                             | 0.7  | 38        |

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Challenges for Academic Investigator–Initiated Pediatric Trials for Rare Diseases. Clinical<br>Therapeutics, 2014, 36, 184-190.                                                                                                                   | 2.5 | 7         |
| 38 | Collagen receptors integrin alpha2beta1 and discoidin domain receptor 1 regulate maturation of the glomerular basement membrane and loss of integrin alpha2beta1 delays kidney fibrosis in COL4A3 knockout mice. Matrix Biology, 2014, 34, 13-21. | 3.6 | 60        |
| 39 | Diagnosis of Alport syndrome—search for proteomic biomarkers in body fluids. Pediatric Nephrology,<br>2013, 28, 2117-2123.                                                                                                                        | 1.7 | 16        |
| 40 | Clinical practice recommendations for the treatment of Alport syndrome: a statement of the Alport Syndrome Research Collaborative. Pediatric Nephrology, 2013, 28, 5-11.                                                                          | 1.7 | 118       |
| 41 | Expert Guidelines for the Management of Alport Syndrome and Thin Basement Membrane Nephropathy.<br>Journal of the American Society of Nephrology: JASN, 2013, 24, 364-375.                                                                        | 6.1 | 285       |
| 42 | Alport syndrome—insights from basic and clinical research. Nature Reviews Nephrology, 2013, 9,<br>170-178.                                                                                                                                        | 9.6 | 202       |
| 43 | Discoidin Domain Receptor 1 Protein Is a Novel Modulator of Megakaryocyte-Collagen Interactions.<br>Journal of Biological Chemistry, 2013, 288, 16738-16746.                                                                                      | 3.4 | 42        |
| 44 | Outcomes of Male Patients with Alport Syndrome Undergoing Renal Replacement Therapy. Clinical<br>Journal of the American Society of Nephrology: CJASN, 2012, 7, 1969-1976.                                                                        | 4.5 | 56        |
| 45 | Incidence of renal failure and nephroprotection by RAAS inhibition in heterozygous carriers of<br>X-chromosomal and autosomal recessive Alport mutations. Kidney International, 2012, 81, 779-783.                                                | 5.2 | 113       |
| 46 | Early angiotensin-converting enzyme inhibition in Alport syndrome delays renal failure and improves<br>life expectancy. Kidney International, 2012, 81, 494-501.                                                                                  | 5.2 | 275       |
| 47 | Tumour necrosis factorâ€ <del>î±</del> drives Alport glomerulosclerosis in mice by promoting podocyte apoptosis.<br>Journal of Pathology, 2012, 226, 120-131.                                                                                     | 4.5 | 51        |
| 48 | Plasma leakage through glomerular basement membrane ruptures triggers the proliferation of<br>parietal epithelial cells and crescent formation in nonâ€inflammatory glomerular injury. Journal of<br>Pathology, 2012, 228, 482-494.               | 4.5 | 59        |
| 49 | Renal Protective Effects of Aliskiren Beyond Its Antihypertensive Property in a Mouse Model of Progressive Fibrosis. American Journal of Hypertension, 2011, 24, 355-361.                                                                         | 2.0 | 47        |
| 50 | Differential Kidney Proteome Profiling in a Murine Model of Renal Fibrosis under Treatment with<br>Mycophenolate Mofetil. Pathobiology, 2011, 78, 162-170.                                                                                        | 3.8 | 12        |
| 51 | Bacterial CpG-DNA accelerates Alport glomerulosclerosis by inducing an M1 macrophage phenotype<br>and tumor necrosis factor-l±-mediated podocyte loss. Kidney International, 2011, 79, 189-198.                                                   | 5.2 | 50        |
| 52 | Mycophenolic Acid Displays IMPDH-Dependent and IMPDH-Independent Effects on Renal Fibroblast<br>Proliferation and Function. Therapeutic Drug Monitoring, 2010, 32, 405-412.                                                                       | 2.0 | 19        |
| 53 | Drug-Induced Granulomatous Interstitial Nephritis in a Patient With Ankylosing Spondylitis During<br>Therapy With Adalimumab. American Journal of Kidney Diseases, 2010, 56, e17-e21.                                                             | 1.9 | 42        |
| 54 | Integrin α2-deficient mice provide insights into specific functions of collagen receptors in the kidney.<br>Fibrogenesis and Tissue Repair, 2010, 3, 19.                                                                                          | 3.4 | 53        |

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Interstitial inflammation in Alport syndrome. Human Pathology, 2010, 41, 582-593.                                                                                                                                                        | 2.0 | 30        |
| 56 | Loss of collagen-receptor DDR1 delays renal fibrosis in hereditary type IV collagen disease. Matrix<br>Biology, 2010, 29, 346-356.                                                                                                       | 3.6 | 112       |
| 57 | Living donor kidney transplantation from relatives with mild urinary abnormalities in Alport<br>syndrome: long-term risk, benefit and outcome. Nephrology Dialysis Transplantation, 2009, 24,<br>1626-1630.                              | 0.7 | 64        |
| 58 | Treatment of Alport syndrome: beyond animal models. Kidney International, 2009, 76, 599-603.                                                                                                                                             | 5.2 | 38        |
| 59 | Ccl2/Mcpâ€1 blockade reduces glomerular and interstitial macrophages but does not ameliorate renal pathology in <i>collagen4A3</i> â€deficient mice with autosomal recessive Alport nephropathy. Journal of Pathology, 2009, 218, 40-47. | 4.5 | 35        |
| 60 | Inner ear defects and hearing loss in mice lacking the collagen receptor DDR1. Laboratory Investigation, 2008, 88, 27-37.                                                                                                                | 3.7 | 57        |
| 61 | Stem cell therapy for Alport syndrome: the hope beyond the hype. Nephrology Dialysis<br>Transplantation, 2008, 24, 731-734.                                                                                                              | 0.7 | 40        |
| 62 | Understanding renal disorders as systemic diseases: the fascinating world of basement membranes beyond the glomerulus. Nephrology Dialysis Transplantation, 2008, 23, 1823-1825.                                                         | 0.7 | 2         |
| 63 | Nephroprotective effect of the HMG-CoA-reductase inhibitor cerivastatin in a mouse model of progressive renal fibrosis in Alport syndrome. Nephrology Dialysis Transplantation, 2007, 22, 1062-1069.                                     | 0.7 | 46        |
| 64 | Multipotent mesenchymal stem cells reduce interstitial fibrosis but do not delay progression of chronic kidney disease in collagen4A3-deficient mice. Kidney International, 2006, 70, 121-129.                                           | 5.2 | 243       |
| 65 | Bone marrow transplantation rescues Alport mice*. Nephrology Dialysis Transplantation, 2006, 21, 2721-2723.                                                                                                                              | 0.7 | 7         |
| 66 | Chronic Renal Failure and Shortened Lifespan in COL4A3+/â^' Mice. Journal of the American Society of<br>Nephrology: JASN, 2006, 17, 1986-1994.                                                                                           | 6.1 | 39        |
| 67 | Nephroprotection by antifibrotic and anti-inflammatory effects of the vasopeptidase inhibitor AVE7688. Kidney International, 2005, 68, 456-463.                                                                                          | 5.2 | 38        |
| 68 | Delayed Chemokine Receptor 1 Blockade Prolongs Survival in Collagen 4A3–Deficient Mice with Alport<br>Disease. Journal of the American Society of Nephrology: JASN, 2005, 16, 977-985.                                                   | 6.1 | 94        |
| 69 | Antifibrotic, nephroprotective potential of ACE inhibitor vs AT1 antagonist in a murine model of renal fibrosis. Nephrology Dialysis Transplantation, 2004, 19, 1716-1723.                                                               | 0.7 | 89        |
| 70 | DDR1-deficient mice show localized subepithelial GBM thickening with focal loss of slit diaphragms and proteinuria. Kidney International, 2004, 66, 102-111.                                                                             | 5.2 | 85        |
| 71 | Preemptive ramipril therapy delays renal failure and reduces renal fibrosis in COL4A3-knockout mice<br>with Alport syndrome11See Editorial by Abbate and Remuzzi, p. 764 Kidney International, 2003, 63,<br>438-446.                     | 5.2 | 196       |
| 72 | X-Linked Alport Syndrome. Journal of the American Society of Nephrology: JASN, 2003, 14, 2603-2610.                                                                                                                                      | 6.1 | 394       |

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Novel COL4A4 splice defect and inâ€frame deletion in a large consanguine family as a genetic link<br>between benign familial haematuria and autosomal Alport syndrome. Nephrology Dialysis<br>Transplantation, 2003, 18, 1122-1127. | 0.7 | 37        |
| 74 | Meta-analysis of genotype-phenotype correlation in X-linked Alport syndrome: impact on clinical counselling. Nephrology Dialysis Transplantation, 2002, 17, 1218-1227.                                                              | 0.7 | 215       |
| 75 | Membranous nephropathy from exposure to mercury in the fluorescentâ€ŧubeâ€ŧecycling industry.<br>Nephrology Dialysis Transplantation, 2001, 16, 2253-2255.                                                                          | 0.7 | 41        |
| 76 | Sporadic case of X-chromosomal Alport syndrome in a consanguineous family. Pediatric Nephrology, 2000, 14, 758-761.                                                                                                                 | 1.7 | 7         |
| 77 | X-linked Alport Syndrome. Journal of the American Society of Nephrology: JASN, 2000, 11, 649-657.                                                                                                                                   | 6.1 | 455       |
| 78 | Use of psoralen-coupled nucleotide primers for screening of COL4A5 mutations in Alport syndrome.<br>Kidney International, 1996, 50, 1363-1367.                                                                                      | 5.2 | 7         |