Oliver Gross

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6410647/publications.pdf

Version: 2024-02-01

78	7,550	40	82
papers	citations	h-index	g-index
89	89	89	9305
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Multiorgan and Renal Tropism of SARS-CoV-2. New England Journal of Medicine, 2020, 383, 590-592.	27.0	1,523
2	Intensive Supportive Care plus Immunosuppression in IgA Nephropathy. New England Journal of Medicine, 2015, 373, 2225-2236.	27.0	516
3	X-linked Alport Syndrome. Journal of the American Society of Nephrology: JASN, 2000, 11, 649-657.	6.1	455
4	X-Linked Alport Syndrome. Journal of the American Society of Nephrology: JASN, 2003, 14, 2603-2610.	6.1	394
5	Expert Guidelines for the Management of Alport Syndrome and Thin Basement Membrane Nephropathy. Journal of the American Society of Nephrology: JASN, 2013, 24, 364-375.	6.1	285
6	Early angiotensin-converting enzyme inhibition in Alport syndrome delays renal failure and improves life expectancy. Kidney International, 2012, 81, 494-501.	5.2	275
7	SARS-CoV-2 renal tropism associates with acute kidney injury. Lancet, The, 2020, 396, 597-598.	13.7	253
8	Multipotent mesenchymal stem cells reduce interstitial fibrosis but do not delay progression of chronic kidney disease in collagen4A3-deficient mice. Kidney International, 2006, 70, 121-129.	5.2	243
9	Meta-analysis of genotype-phenotype correlation in X-linked Alport syndrome: impact on clinical counselling. Nephrology Dialysis Transplantation, 2002, 17, 1218-1227.	0.7	215
10	Alport syndrome: a unified classification of genetic disorders of collagen IV $\hat{1}\pm345$: a position paper of the Alport Syndrome Classification Working Group. Kidney International, 2018, 93, 1045-1051.	5.2	206
11	Alport syndromeâ€"insights from basic and clinical research. Nature Reviews Nephrology, 2013, 9, 170-178.	9.6	202
12	Preemptive ramipril therapy delays renal failure and reduces renal fibrosis in COL4A3-knockout mice with Alport syndrome 11See Editorial by Abbate and Remuzzi, p. 764 Kidney International, 2003, 63, 438-446.	5.2	196
13	Intestinal Dysbiosis, Barrier Dysfunction, and Bacterial Translocation Account for CKD–Related Systemic Inflammation. Journal of the American Society of Nephrology: JASN, 2017, 28, 76-83.	6.1	196
14	Clinical practice recommendations for the treatment of Alport syndrome: a statement of the Alport Syndrome Research Collaborative. Pediatric Nephrology, 2013, 28, 5-11.	1.7	118
15	Incidence of renal failure and nephroprotection by RAAS inhibition in heterozygous carriers of X-chromosomal and autosomal recessive Alport mutations. Kidney International, 2012, 81, 779-783.	5.2	113
16	Loss of collagen-receptor DDR1 delays renal fibrosis in hereditary type IV collagen disease. Matrix Biology, 2010, 29, 346-356.	3.6	112
17	After ten years of follow-up, no difference between supportive care plus immunosuppression and supportive care alone in IgA nephropathy. Kidney International, 2020, 98, 1044-1052.	5.2	103
18	Expert consensus guidelines for the genetic diagnosis of Alport syndrome. Pediatric Nephrology, 2019, 34, 1175-1189.	1.7	97

#	Article	IF	Citations
19	Delayed Chemokine Receptor 1 Blockade Prolongs Survival in Collagen 4A3–Deficient Mice with Alport Disease. Journal of the American Society of Nephrology: JASN, 2005, 16, 977-985.	6.1	94
20	A multicenter, randomized, placebo-controlled, double-blind phase 3 trial with open-arm comparison indicates safety and efficacy of nephroprotective therapy with ramipril in children with Alport's syndrome. Kidney International, 2020, 97, 1275-1286.	5.2	94
21	Antifibrotic, nephroprotective potential of ACE inhibitor vs AT1 antagonist in a murine model of renal fibrosis. Nephrology Dialysis Transplantation, 2004, 19, 1716-1723.	0.7	89
22	DDR1-deficient mice show localized subepithelial GBM thickening with focal loss of slit diaphragms and proteinuria. Kidney International, 2004, 66, 102-111.	5.2	85
23	COVID-19-associated nephritis: early warning for disease severity and complications?. Lancet, The, 2020, 395, e87-e88.	13.7	84
24	Clinical practice recommendations for the diagnosis and management of Alport syndrome in children, adolescents, and young adults–an update for 2020. Pediatric Nephrology, 2021, 36, 711-719.	1.7	70
25	Living donor kidney transplantation from relatives with mild urinary abnormalities in Alport syndrome: long-term risk, benefit and outcome. Nephrology Dialysis Transplantation, 2009, 24, 1626-1630.	0.7	64
26	Effects of Two Immunosuppressive Treatment Protocols for IgA Nephropathy. Journal of the American Society of Nephrology: JASN, 2018, 29, 317-325.	6.1	64
27	Collagen receptors integrin alpha2beta1 and discoidin domain receptor 1 regulate maturation of the glomerular basement membrane and loss of integrin alpha2beta1 delays kidney fibrosis in COL4A3 knockout mice. Matrix Biology, 2014, 34, 13-21.	3.6	60
28	Plasma leakage through glomerular basement membrane ruptures triggers the proliferation of parietal epithelial cells and crescent formation in nonâ€inflammatory glomerular injury. Journal of Pathology, 2012, 228, 482-494.	4.5	59
29	Inner ear defects and hearing loss in mice lacking the collagen receptor DDR1. Laboratory Investigation, 2008, 88, 27-37.	3.7	57
30	Outcomes of Male Patients with Alport Syndrome Undergoing Renal Replacement Therapy. Clinical Journal of the American Society of Nephrology: CJASN, 2012, 7, 1969-1976.	4.5	56
31	Integrin $\hat{l}\pm 2$ -deficient mice provide insights into specific functions of collagen receptors in the kidney. Fibrogenesis and Tissue Repair, 2010, 3, 19.	3.4	53
32	Tumour necrosis factor‱ drives Alport glomerulosclerosis in mice by promoting podocyte apoptosis. Journal of Pathology, 2012, 226, 120-131.	4.5	51
33	Bacterial CpG-DNA accelerates Alport glomerulosclerosis by inducing an M1 macrophage phenotype and tumor necrosis factor-1±-mediated podocyte loss. Kidney International, 2011, 79, 189-198.	5.2	50
34	Renal Protective Effects of Aliskiren Beyond Its Antihypertensive Property in a Mouse Model of Progressive Fibrosis. American Journal of Hypertension, 2011, 24, 355-361.	2.0	47
35	Nephroprotective effect of the HMG-CoA-reductase inhibitor cerivastatin in a mouse model of progressive renal fibrosis in Alport syndrome. Nephrology Dialysis Transplantation, 2007, 22, 1062-1069.	0.7	46
36	The DESCARTES-Nantes survey of kidney transplant recipients displaying clinical operational tolerance identifies 35 new tolerant patients and 34 almost tolerant patients. Nephrology Dialysis Transplantation, 2016, 31, 1002-1013.	0.7	46

#	Article	IF	CITATIONS
37	Drug-Induced Granulomatous Interstitial Nephritis in a Patient With Ankylosing Spondylitis During Therapy With Adalimumab. American Journal of Kidney Diseases, 2010, 56, e17-e21.	1.9	42
38	Discoidin Domain Receptor 1 Protein Is a Novel Modulator of Megakaryocyte-Collagen Interactions. Journal of Biological Chemistry, 2013, 288, 16738-16746.	3.4	42
39	Membranous nephropathy from exposure to mercury in the fluorescentâ€ŧubeâ€recycling industry. Nephrology Dialysis Transplantation, 2001, 16, 2253-2255.	0.7	41
40	Stem cell therapy for Alport syndrome: the hope beyond the hype. Nephrology Dialysis Transplantation, 2008, 24, 731-734.	0.7	40
41	Advances and unmet needs in genetic, basic and clinical science in Alport syndrome: report from the 2015 International Workshop on Alport Syndrome. Nephrology Dialysis Transplantation, 2017, 32, gfw095.	0.7	40
42	Chronic Renal Failure and Shortened Lifespan in COL4A3+/â^ Mice. Journal of the American Society of Nephrology: JASN, 2006, 17, 1986-1994.	6.1	39
43	Nephroprotection by antifibrotic and anti-inflammatory effects of the vasopeptidase inhibitor AVE7688. Kidney International, 2005, 68, 456-463.	5. 2	38
44	Treatment of Alport syndrome: beyond animal models. Kidney International, 2009, 76, 599-603.	5.2	38
45	Alport syndrome from bench to bedside: the potential of current treatment beyond RAAS blockade and the horizon of future therapies. Nephrology Dialysis Transplantation, 2014, 29, iv124-iv130.	0.7	38
46	Novel COL4A4 splice defect and inâ€frame deletion in a large consanguine family as a genetic link between benign familial haematuria and autosomal Alport syndrome. Nephrology Dialysis Transplantation, 2003, 18, 1122-1127.	0.7	37
47	Ccl2/Mcpâ€1 blockade reduces glomerular and interstitial macrophages but does not ameliorate renal pathology in <i>collagen4A3</i> â€deficient mice with autosomal recessive Alport nephropathy. Journal of Pathology, 2009, 218, 40-47.	4.5	35
48	Interstitial inflammation in Alport syndrome. Human Pathology, 2010, 41, 582-593.	2.0	30
49	Prospective study on the potential of RAAS blockade to halt renal disease in Alport syndrome patients with heterozygous mutations. Pediatric Nephrology, 2017, 32, 131-137.	1.7	29
50	Antifibrotic, nephroprotective effects of paricalcitol versus calcitriol on top of ACE-inhibitor therapy in the COL4A3 knockout mouse model for progressive renal fibrosis. Nephrology Dialysis Transplantation, 2014, 29, 1012-1019.	0.7	27
51	Mycophenolic Acid Displays IMPDH-Dependent and IMPDH-Independent Effects on Renal Fibroblast Proliferation and Function. Therapeutic Drug Monitoring, 2010, 32, 405-412.	2.0	19
52	Genotype–phenotype correlations and nephroprotective effects of RAAS inhibition in patients with autosomal recessive Alport syndrome. Pediatric Nephrology, 2021, 36, 2719-2730.	1.7	19
53	Sodium-Glucose Cotransporter-2 Inhibitors in Patients with Hereditary Podocytopathies, Alport Syndrome, and FSGS: A Case Series to Better Plan a Large-Scale Study. Cells, 2021, 10, 1815.	4.1	19
54	Collagen IVα345 dysfunction in glomerular basement membrane diseases. I. Discovery of a COL4A3 variant in familial Goodpasture's and Alport diseases. Journal of Biological Chemistry, 2021, 296, 100590.	3.4	19

#	Article	IF	CITATIONS
55	Anti-microRNA-21 Therapy on Top of ACE Inhibition Delays Renal Failure in Alport Syndrome Mouse Models. Cells, 2022, 11, 594.	4.1	17
56	Diagnosis of Alport syndromeâ€"search for proteomic biomarkers in body fluids. Pediatric Nephrology, 2013, 28, 2117-2123.	1.7	16
57	Lifelong effect of therapy in young patients with the <i>COL4A5</i> Alport missense variant p.(Gly624Asp): a prospective cohort study. Nephrology Dialysis Transplantation, 2022, 37, 2496-2504.	0.7	16
58	The importance of clinician, patient and researcher collaborations in Alport syndrome. Pediatric Nephrology, 2020, 35, 733-742.	1.7	15
59	Mutations in PRDM15 Are a Novel Cause of Galloway-Mowat Syndrome. Journal of the American Society of Nephrology: JASN, 2021, 32, 580-596.	6.1	15
60	Identification of platelet-derived growth factor C as a mediator of both renal fibrosis and hypertension. Kidney International, 2019, 95, 1103-1119.	5.2	14
61	Kidney Injury by Variants in the COL4A5 Gene Aggravated by Polymorphisms in Slit Diaphragm Genes Causes Focal Segmental Glomerulosclerosis. International Journal of Molecular Sciences, 2019, 20, 519.	4.1	13
62	Differential Kidney Proteome Profiling in a Murine Model of Renal Fibrosis under Treatment with Mycophenolate Mofetil. Pathobiology, 2011, 78, 162-170.	3.8	12
63	Validation of a Prospective Urinalysis-Based Prediction Model for ICU Resources and Outcome of COVID-19 Disease: A Multicenter Cohort Study. Journal of Clinical Medicine, 2021, 10, 3049.	2.4	12
64	Preclinical Alterations in the Serum of COL(IV)A3 $<$ sup $>$ â \in " $<$ /sup $>$ / $<$ sup $>$ â \in " $<$ /sup $>$ Mice as Early Biomarkers of Alport Syndrome. Journal of Proteome Research, 2015, 14, 5202-5214.	3.7	11
65	The Hypomorphic Variant p.(Gly624Asp) in COL4A5 as a Possible Cause for an Unexpected Severe Phenotype in a Family With X-Linked Alport Syndrome. Frontiers in Pediatrics, 2019, 7, 485.	1.9	11
66	Addressing the †hypoxia paradox' in severe COVID-19: literature review and report of four cases treated with erythropoietin analogues. Molecular Medicine, 2021, 27, 120.	4.4	9
67	Use of psoralen-coupled nucleotide primers for screening of COL4A5 mutations in Alport syndrome. Kidney International, 1996, 50, 1363-1367.	5.2	7
68	Sporadic case of X-chromosomal Alport syndrome in a consanguineous family. Pediatric Nephrology, 2000, 14, 758-761.	1.7	7
69	Bone marrow transplantation rescues Alport mice*. Nephrology Dialysis Transplantation, 2006, 21, 2721-2723.	0.7	7
70	Challenges for Academic Investigator–Initiated Pediatric Trials for Rare Diseases. Clinical Therapeutics, 2014, 36, 184-190.	2.5	7
71	Characterization of Sensorineural Hearing Loss in Children with Alport Syndrome. Life, 2020, 10, 360.	2.4	7
72	Clinical trial recommendations for potential Alport syndrome therapies. Kidney International, 2020, 97, 1109-1116.	5.2	7

#	Article	IF	CITATION
73	Precise variant interpretation, phenotype ascertainment, and genotype–phenotype correlation of children in the <scp>EARLY PROâ€₹ECT</scp> Alport trial. Clinical Genetics, 2021, 99, 143-156.	2.0	7
74	Organoprotective Effects of Spironolactone on Top of Ramipril Therapy in a Mouse Model for Alport Syndrome. Journal of Clinical Medicine, 2021, 10, 2958.	2.4	7
75	Effects of mycophenolate mofetil on kidney function and phosphorylation status of renal proteins in Alport COL4A3-deficient mice. Proteome Science, 2014, 12, 56.	1.7	6
76	Understanding renal disorders as systemic diseases: the fascinating world of basement membranes beyond the glomerulus. Nephrology Dialysis Transplantation, 2008, 23, 1823-1825.	0.7	2
77	Genetische Ursachen und Therapie beim Alport-Syndrom. Medizinische Genetik, 2019, 30, 429-437.	0.2	O
78	Response to: Diagnosis of Alport syndrome, is there a role for skin biopsy?. Pediatric Nephrology, 2021, 36, 1031-1031.	1.7	0