Xintang Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6410582/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fast (Ce,Gd) ₃ Ga ₂ Al ₃ O ₁₂ Scintillators Grown by the Optical Floating Zone Method. Crystal Growth and Design, 2022, 22, 180-190.	3.0	11
2	Oxygen Vacancies of Commercial V ₂ O ₅ Induced by Mechanical Force to Enhance the Diffusion of Zinc Ions in Aqueous Zinc Battery. Batteries and Supercaps, 2022, 5, .	4.7	19
3	Wide Concentration Range of Tb3+ Doping Influence on Scintillation Properties of (Ce, Tb,) Tj ETQq1 1 0.784314	rgBT /Ove	erlgck 10 Tf
4	Cobalt Nanorods as Transition Metal Electrode Materials for Asymmetric Supercapacitor Applications. Journal of Physical Chemistry C, 2020, 124, 20746-20756.	3.1	8
5	Direct growth of 2D MoO2 single crystal on SiO2/Si substrate by atmospheric pressure chemical vapor deposition. Materials Chemistry and Physics, 2020, 251, 123166.	4.0	8
6	In Situ Engineering of the Core–Shell Ag@Cu Structure on Porous Nanowire Arrays for High Energy and Stable Aqueous Ag–Bi Batteries. ACS Applied Materials & Interfaces, 2020, 12, 10332-10340.	8.0	7
7	3D porous nickel nanosheet arrays as an advanced electrode material for high energy hybrid supercapacitors. Journal of Electroanalytical Chemistry, 2020, 864, 114118.	3.8	5
8	Low-crystalline FeOx@PPy hybridized with (Ni0.25Mn0.75)3O4@PPy to constructed high-voltage aqueous hybrid capacitor with 2.4ÂV. Journal of Electroanalytical Chemistry, 2020, 859, 113828.	3.8	1
9	Catalyst-free synthesis of few-layer graphene films on silicon dioxide/Si substrates using ethylene glycol by chemical vapor deposition. Materials Research Express, 2019, 6, 035602.	1.6	2
10	Ultrathin CoFe-layered double hydroxide nanosheets embedded in high conductance Cu ₃ N nanowire arrays with a 3D core–shell architecture for ultrahigh capacitance supercapacitors. Journal of Materials Chemistry A, 2018, 6, 24603-24613.	10.3	80
11	Nest-like V ₃ O ₇ self-assembled by porous nanowires as an anode supercapacitor material and its performance optimization through bonding with N-doped carbon. Journal of Materials Chemistry A, 2018, 6, 16475-16484.	10.3	32
12	A ZnO/TiO ₂ composite nanorods photoanode with improved performance for dyeâ€sensitized solar cells. Crystal Research and Technology, 2016, 51, 548-553.	1.3	12
13	Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts. Nature Communications, 2016, 7, 12273.	12.8	306
14	Carbonâ€Stabilized Highâ€Capacity Ferroferric Oxide Nanorod Array for Flexible Solidâ€State Alkaline Battery–Supercapacitor Hybrid Device with High Environmental Suitability. Advanced Functional Materials, 2015, 25, 5384-5394.	14.9	457
15	Building smart TiO ₂ nanorod networks in/on the film of P25 nanoparticles for high-efficiency dye sensitized solar cells. RSC Advances, 2014, 4, 12944-12949.	3.6	22
16	Directly Grown K _{0.33} WO ₃ Nanosheet Film Electrode for Fast Direct Electron Transfer of Protein. ChemElectroChem, 2014, 1, 463-470.	3.4	3
17	Preparation and gas-sensing property of ultra-fine NiO/SnO2 nano-particles. RSC Advances, 2012, 2, 10324.	3.6	28
18	Recent Advances in Metal Oxideâ€based Electrode Architecture Design for Electrochemical Energy Storage. Advanced Materials, 2012, 24, 5166-5180.	21.0	2,251

XINTANG HUANG

#	Article	IF	CITATIONS
19	Mixed Ni–Cu-oxide nanowire array on conductive substrate and its application as enzyme-free glucose sensor. Analytical Methods, 2012, 4, 4003.	2.7	43
20	Co–Fe layered double hydroxide nanowall array grown from an alloy substrate and its calcined product as a composite anode for lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 15969.	6.7	75
21	CNT/Ni hybrid nanostructured arrays: synthesis and application as high-performance electrode materials for pseudocapacitors. Energy and Environmental Science, 2011, 4, 5000.	30.8	125
22	CNT-network modified Ni nanostructured arrays for high performance non-enzymatic glucose sensors. RSC Advances, 2011, 1, 1020.	3.6	80
23	Iron Oxide-Based Nanotube Arrays Derived from Sacrificial Template-Accelerated Hydrolysis: Large-Area Design and Reversible Lithium Storage. Chemistry of Materials, 2010, 22, 212-217.	6.7	311
24	Conversion from ZnO nanospindles into ZnO/ZnS core/shell composites and ZnS microspindles. Crystal Research and Technology, 2009, 44, 402-408.	1.3	17
25	Sonochemical synthesis and characterization of ZnO nanorod/Ag nanoparticle composites. Crystal Research and Technology, 2009, 44, 1249-1254.	1.3	16
26	Carbon/ZnO Nanorod Array Electrode with Significantly Improved Lithium Storage Capability. Journal of Physical Chemistry C, 2009, 113, 5336-5339.	3.1	202
27	Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries. Journal of Materials Chemistry, 2009, 19, 1859.	6.7	273
28	A general route to thickness-tunable multilayered sheets of sheelite-type metal molybdate and their self-assembled films. Journal of Materials Chemistry, 2007, 17, 2754.	6.7	69
29	Hydrothermal Synthesis of Bi2WO6Uniform Hierarchical Microspheres. Crystal Growth and Design, 2007, 7, 1350-1355.	3.0	337
30	Hierarchical nanostructures of cupric oxide on a copper substrate: controllable morphology and wettability. Journal of Materials Chemistry, 2006, 16, 4427.	6.7	181
31	Image interpretation of weak-coupling N-mer adsorbate's STM system. Science Bulletin, 1997, 42, 371-374.	1.7	0
32	Stable growth of (Ce,Gd)3Ga2Al3O12 crystal scintillators by the traveling solvent floating zone method. CrystEngComm, 0, , .	2.6	1