Ashley Moffett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6409674/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single-cell reconstruction of the early maternal–fetal interface in humans. Nature, 2018, 563, 347-353.	27.8	1,547
2	Combinations of Maternal KIR and Fetal HLA-C Genes Influence the Risk of Preeclampsia and Reproductive Success. Journal of Experimental Medicine, 2004, 200, 957-965.	8.5	980
3	Immunology of placentation in eutherian mammals. Nature Reviews Immunology, 2006, 6, 584-594.	22.7	724
4	Pre-eclampsia: pathophysiology and clinical implications. BMJ: British Medical Journal, 2019, 366, l2381.	2.3	613
5	Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nature Cell Biology, 2017, 19, 568-577.	10.3	442
6	Trophoblast organoids as a model for maternal–fetal interactions during human placentation. Nature, 2018, 564, 263-267.	27.8	436
7	Variable NK cell receptors and their MHC class I ligands in immunity, reproduction and human evolution. Nature Reviews Immunology, 2013, 13, 133-144.	22.7	431
8	Maternal activating KIRs protect against human reproductive failure mediated by fetal HLA-C2. Journal of Clinical Investigation, 2010, 120, 4102-4110.	8.2	425
9	Development of the human placenta. Development (Cambridge), 2019, 146, .	2.5	378
10	BRACHYURY and CDX2 Mediate BMP-Induced Differentiation of Human and Mouse Pluripotent Stem Cells into Embryonic and Extraembryonic Lineages. Cell Stem Cell, 2011, 9, 144-155.	11.1	340
11	Uterine NK cells: active regulators at the maternal-fetal interface. Journal of Clinical Investigation, 2014, 124, 1872-1879.	8.2	309
12	Human leucocyte antigen (HLA) expression of primary trophoblast cells and placental cell lines, determined using single antigen beads to characterize allotype specificities of antiâ€HLA antibodies. Immunology, 2009, 127, 26-39.	4.4	291
13	Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro. Nature Genetics, 2021, 53, 1698-1711.	21.4	238
14	Maternal uterine NK cell–activating receptor KIR2DS1 enhances placentation. Journal of Clinical Investigation, 2013, 123, 4264-4272.	8.2	231
15	What Is Trophoblast? A Combination of Criteria Define Human First-Trimester Trophoblast. Stem Cell Reports, 2016, 6, 257-272.	4.8	213
16	Variants in the fetal genome near FLT1 are associated with risk of preeclampsia. Nature Genetics, 2017, 49, 1255-1260.	21.4	205
17	A homodimeric complex of HLA-G on normal trophoblast cells modulates antigen-presenting cells via LILRB1. European Journal of Immunology, 2007, 37, 1924-1937.	2.9	189
18	Human HLA-G+ extravillous trophoblasts: Immune-activating cells that interact with decidual leukocytes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7219-7224.	7.1	185

#	Article	IF	CITATIONS
19	First do no harm: uterine natural killer (NK) cells in assisted reproduction. Human Reproduction, 2015, 30, 1519-1525.	0.9	156
20	Investigation of human trophoblast invasion <i>in vitro</i> . Human Reproduction Update, 2020, 26, 501-513.	10.8	155
21	Coâ€evolution of <scp>NK</scp> receptors and <scp>HLA</scp> ligands in humans is driven by reproduction. Immunological Reviews, 2015, 267, 283-297.	6.0	154
22	Immature NK Cells, Capable of Producing IL-22, Are Present in Human Uterine Mucosa. Journal of Immunology, 2010, 185, 3913-3918.	0.8	153
23	Killer Ig-Like Receptor Expression in Uterine NK Cells Is Biased toward Recognition of HLA-C and Alters with Gestational Age. Journal of Immunology, 2008, 181, 39-46.	0.8	149
24	Maternal <i>KIR</i> in Combination with Paternal <i>HLA-C2</i> Regulate Human Birth Weight. Journal of Immunology, 2014, 192, 5069-5073.	0.8	136
25	Natural killer cells, miscarriage, and infertility. BMJ: British Medical Journal, 2004, 329, 1283-1285.	2.3	135
26	A <i>KIR B</i> centromeric region present in Africans but not Europeans protects pregnant women from pre-eclampsia. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 845-850.	7.1	134
27	Composition, Development, and Function of Uterine Innate Lymphoid Cells. Journal of Immunology, 2015, 195, 3937-3945.	0.8	130
28	Distinctive phenotypes and functions of innate lymphoid cells in human decidua during early pregnancy. Nature Communications, 2020, 11, 381.	12.8	110
29	Genetic predisposition to hypertension is associated with preeclampsia in European and Central Asian women. Nature Communications, 2020, 11, 5976.	12.8	102
30	Phenotypic and functional characterization of first-trimester human placental macrophages, Hofbauer cells. Journal of Experimental Medicine, 2021, 218, .	8.5	98
31	The effect of pregnancy on the uterine NK cell KIR repertoire. European Journal of Immunology, 2011, 41, 3017-3027.	2.9	94
32	MHC-dependent inhibition of uterine NK cells impedes fetal growth and decidual vascular remodelling. Nature Communications, 2014, 5, 3359.	12.8	90
33	Tissue-Specific Education of Decidual NK Cells. Journal of Immunology, 2015, 195, 3026-3032.	0.8	88
34	Establishment and differentiation of long-term trophoblast organoid cultures from the human placenta. Nature Protocols, 2020, 15, 3441-3463.	12.0	86
35	Generation of a three-dimensional collagen scaffold-based model of the human endometrium. Interface Focus, 2020, 10, 20190079.	3.0	85
36	Pregnancy, parturition and preeclampsia in women of African ancestry. American Journal of Obstetrics and Gynecology, 2014, 210, 510-520.e1.	1.3	80

#	Article	IF	CITATIONS
37	Activating KIR2DS4 Is Expressed by Uterine NK Cells and Contributes to Successful Pregnancy. Journal of Immunology, 2016, 197, 4292-4300.	0.8	80
38	Wide-ranging DNA methylation differences of primary trophoblast cell populations and derived cell lines: implications and opportunities for understanding trophoblast functionâ€. Molecular Human Reproduction, 2011, 17, 344-353.	2.8	76
39	Variation of maternal KIR and fetal HLA-C genes in reproductive failure: too early for clinical intervention. Reproductive BioMedicine Online, 2016, 33, 763-769.	2.4	73
40	Maternal allo-recognition of the fetus. Fertility and Sterility, 2017, 107, 1269-1272.	1.0	73
41	The role of the maternal immune system in the regulation of human birthweight. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140071.	4.0	70
42	A microfluidics assay to study invasion of human placental trophoblast cells. Journal of the Royal Society Interface, 2017, 14, 20170131.	3.4	68
43	Tissue stiffness at the human maternal–fetal interface. Human Reproduction, 2019, 34, 1999-2008.	0.9	68
44	The Residual Innate Lymphoid Cells in NFIL3-Deficient Mice Support Suboptimal Maternal Adaptations to Pregnancy. Frontiers in Immunology, 2016, 7, 43.	4.8	62
45	How Do Uterine Natural Killer and Innate Lymphoid Cells Contribute to Successful Pregnancy?. Frontiers in Immunology, 2021, 12, 607669.	4.8	55
46	Molecular characterization of KIR3DL3. Immunogenetics, 2006, 57, 904-916.	2.4	54
47	Chemokine Scavenger D6 Is Expressed by Trophoblasts and Aids the Survival of Mouse Embryos Transferred into Allogeneic Recipients. Journal of Immunology, 2010, 184, 3202-3212.	0.8	54
48	A niche of trophoblast progenitor cells identified by integrin α2 is present in first trimester human placentas. Development (Cambridge), 2018, 145, .	2.5	54
49	Characterization of primary models of human trophoblast. Development (Cambridge), 2021, 148, .	2.5	50
50	KIR ligand C2 is associated with increased susceptibility to childhood ALL and confers an elevated risk for late relapse. Blood, 2014, 124, 2248-2251.	1.4	48
51	KIR2DS5 allotypes that recognize the C2 epitope of HLA are common among Africans and absent from Europeans. Immunity, Inflammation and Disease, 2017, 5, 461-468.	2.7	45
52	Modulation of Human Leukocyte Antigen-C by Human Cytomegalovirus Stimulates KIR2DS1 Recognition by Natural Killer Cells. Frontiers in Immunology, 2017, 8, 298.	4.8	45
53	Placental Implantation Disorders. Obstetrics and Gynecology Clinics of North America, 2020, 47, 117-132.	1.9	45
54	Clathrin light chains are required for the gyrating-clathrin recycling pathway and thereby promote cell migration. Nature Communications, 2014, 5, 3891.	12.8	44

#	Article	IF	CITATIONS
55	The CD94/NKG2A inhibitory receptor educates uterine NK cells to optimize pregnancy outcomes in humans and mice. Immunity, 2021, 54, 1231-1244.e4.	14.3	44
56	Menstrual flow as a non-invasive source of endometrial organoids. Communications Biology, 2021, 4, 651.	4.4	40
57	Natural Killer Cells in Human Pregnancy. Methods in Molecular Biology, 2010, 612, 447-463.	0.9	39
58	InÂvitro fertilization add-ons for the endometrium: it doesn't add-up. Fertility and Sterility, 2019, 112, 987-993.	1.0	38
59	Ex vivo functional responses to HLA-G differ between blood and decidual NK cells. Molecular Human Reproduction, 2011, 17, 577-586.	2.8	34
60	High-Resolution Genetic and Phenotypic Analysis of KIR2DL1 Alleles and Their Association with Pre-Eclampsia. Journal of Immunology, 2018, 201, 2593-2601.	0.8	33
61	The role of shed placental DNA in the systemic inflammatory syndrome of preeclampsia. American Journal of Obstetrics and Gynecology, 2015, 213, 268-277.	1.3	31
62	Decision-to-delivery interval of emergency cesarean section in Uganda: a retrospective cohort study. BMC Pregnancy and Childbirth, 2020, 20, 324.	2.4	29
63	BAP1/ASXL complex modulation regulates epithelial-mesenchymal transition during trophoblast differentiation and invasion. ELife, 2021, 10, .	6.0	27
64	Isolation of Cells from the Fetoâ€Maternal Interface. Current Protocols in Immunology, 2012, 97, Unit 7.40.1-11.	3.6	25
65	Variations in killer-cell immunoglobulin-like receptor and human leukocyte antigen genes and immunity to malaria. Cellular and Molecular Immunology, 2020, 17, 799-806.	10.5	23
66	Reproduction, infection and killer-cell immunoglobulin-like receptor haplotype evolution. Immunogenetics, 2016, 68, 755-764.	2.4	21
67	Hypertension Persisting after Pre-Eclampsia: A Prospective Cohort Study at Mulago Hospital, Uganda. PLoS ONE, 2013, 8, e85273.	2.5	15
68	Capacity for science in sub-Saharan Africa. Lancet, The, 2015, 385, 2435-2437.	13.7	15
69	Polymorphism in killer cell immunoglobulin-like receptors and human leukocyte antigen-c and predisposition to preeclampsia in Ethiopian pregnant women population. Journal of Reproductive Immunology, 2020, 141, 103169.	1.9	12
70	The maternal and placental origins of chronic disease. , 2010, , 5-16.		11
71	Reply: First do no harm: continuing the uterine NK cell debate. Human Reproduction, 2016, 31, 218-219.	0.9	11
72	Relative impact of pre-eclampsia on birth weight in a low resource setting: A prospective cohort study. Pregnancy Hypertension, 2020, 21, 1-6.	1.4	11

#	Article	IF	CITATIONS
73	Inhibition of Phosphoinositide-3-Kinase Signaling Promotes the Stem Cell State of Trophoblast. Stem Cells, 2019, 37, 1307-1318.	3.2	10
74	Clinical causes and aspects of placental insufficiency. , 0, , 114-125.		7
75	Human evolution: brain, birthweight and the immune system. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140061.	4.0	7
76	Association of maternal KIR and fetal HLA-C genes with the risk of preeclampsia in the Chinese Han population, Long etÂal Placenta, 2015, 36, 967.	1.5	6
77	Diversity of KIR genes and their HLA-C ligands in Ugandan populations with historically varied malaria transmission intensity. Malaria Journal, 2021, 20, 111.	2.3	5
78	Uterine blood flow as a determinant of fetoplacental development. , 0, , 126-146.		4
79	NK cell allorecognition. Nature Reviews Immunology, 2017, 17, 466-466.	22.7	3
80	The maternal circulation and placental shape. , 2010, , 161-174.		3
81	Preventing death following unsafe abortion: a case series from urban Uganda. AJOG Global Reports, 2022, 2, 100039.	1.0	3
82	Pregnancy disorders in Africa and the obstetric dilemma. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2016, 110, 681-683.	1.8	2
83	Placental amino acid transporters. , 0, , 147-160.		1
84	Nutrition and preimplantation development. , 0, , 35-46.		1
85	Trophoblast invasion and uterine artery remodelling in primates. , 0, , 92-101.		1
86	Charlie Loke: Contributions from Tennis Court Road—Past, Present and Future. Placenta, 2003, 24, S4-S9.	1.5	0
87	Placental function and later risk of osteoporosis. , 0, , 216-228.		0
88	Glucocorticoids and placental programming. , 0, , 175-187.		0
89	Imprinted genes and placental growth. , 0, , 57-73.		0
90	Reply. American Journal of Obstetrics and Gynecology, 2016, 214, 548-549.	1.3	0

#	Article	IF	CITATIONS
91	Pre- and periconceptual health and the HPA axis. , 0, , 17-34.		Ο
92	Maternofetal transport pathways during embryogenesis and organogenesis. , 0, , 47-56.		0
93	Genomic imprinting. , 0, , 74-91.		0
94	The role of the maternal immune response in fetal programming. , 0, , 102-113.		0
95	Clinical biomarkers of placental development. , 0, , 188-200.		0
96	The placental roots of cardiovascular disease. , 0, , 201-215.		0
97	Final general discussion. , 0, , 229-232.		0
98	The placenta and developmental programming. , 0, , 233-235.		0