
Gabriel Ichim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6408659/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Limited Mitochondrial Permeabilization Causes DNA Damage and Genomic Instability in the Absence of Cell Death. Molecular Cell, 2015, 57, 860-872.	9.7	341
2	A fate worse than death: apoptosis as an oncogenic process. Nature Reviews Cancer, 2016, 16, 539-548.	28.4	325
3	Die another way – non-apoptotic mechanisms of cell death. Journal of Cell Science, 2014, 127, 2135-2144.	2.0	299
4	Widespread Mitochondrial Depletion via Mitophagy Does Not Compromise Necroptosis. Cell Reports, 2013, 5, 878-885.	6.4	240
5	Mitochondrial permeabilization engages NF-κB-dependent anti-tumour activity under caspaseÂdeficiency. Nature Cell Biology, 2017, 19, 1116-1129.	10.3	181
6	Differential retrotranslocation of mitochondrial Bax and Bak. EMBO Journal, 2015, 34, 67-80.	7.8	141
7	Neurotrophins and cell death. Experimental Cell Research, 2012, 318, 1221-1228.	2.6	102
8	Dependence receptor TrkC is a putative colon cancer tumor suppressor. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3017-3022.	7.1	85
9	Failed Apoptosis Enhances Melanoma Cancer Cell Aggressiveness. Cell Reports, 2020, 31, 107731.	6.4	68
10	Neurotrophin-3 production promotes human neuroblastoma cell survival by inhibiting TrkC-induced apoptosis. Journal of Clinical Investigation, 2010, 120, 850-858.	8.2	61
11	Mito-priming as a method to engineer Bcl-2 addiction. Nature Communications, 2016, 7, 10538.	12.8	53
12	Depletion of mitochondria in mammalian cells through enforced mitophagy. Nature Protocols, 2017, 12, 183-194.	12.0	42
13	Caspase-8 function, and phosphorylation, in cell migration. Seminars in Cell and Developmental Biology, 2018, 82, 105-117.	5.0	42
14	Mitochondrial dynamics regulate genome stability via control of caspase-dependent DNA damage. Developmental Cell, 2022, 57, 1211-1225.e6.	7.0	37
15	Apoptosis – Fueling the oncogenic fire. FEBS Journal, 2021, 288, 4445-4463.	4.7	34
16	Confined migration promotes cancer metastasis through resistance to anoikis and increased invasiveness. ELife, 2022, 11, .	6.0	33
17	The Dependence Receptor TrkC Triggers Mitochondria-Dependent Apoptosis upon Cobra-1 Recruitment. Molecular Cell, 2013, 51, 632-646.	9.7	22
18	CDYL2 Epigenetically Regulates MIR124 to Control NF-κB/STAT3-Dependent Breast Cancer Cell Plasticity. IScience, 2020, 23, 101141.	4.1	22

GABRIEL ICHIM

#	Article	IF	CITATIONS
19	TAT-RasGAP ₃₁₇₋₃₂₆ kills cells by targeting inner-leaflet–enriched phospholipids. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31871-31881.	7.1	22
20	Profiling Anti-Apoptotic BCL-xL Protein Expression in Glioblastoma Tumorspheres. Cancers, 2020, 12, 2853.	3.7	19
21	Blocking SHH/Patched Interaction Triggers Tumor Growth Inhibition through Patched-Induced Apoptosis. Cancer Research, 2020, 80, 1970-1980.	0.9	17
22	Hey1- and p53-dependent TrkC proapoptotic activity controls neuroblastoma growth. PLoS Biology, 2018, 16, e2002912.	5.6	14
23	Spontaneous activity of the mitochondrial apoptosis pathway drives chromosomal defects, the appearance of micronuclei and cancer metastasis through the Caspase-Activated DNAse. Cell Death and Disease, 2022, 13, 315.	6.3	14
24	Increased apoptotic sensitivity of glioblastoma enables therapeutic targeting by BH3-mimetics. Cell Death and Differentiation, 2022, 29, 2089-2104.	11.2	10
25	Caspase-independent cell death does not elicit a proliferative response in melanoma cancer cells. BMC Cell Biology, 2018, 19, 11.	3.0	8
26	Mitochondrial Permeabilization: From Lethality to Vitality. , 2016, , 213-226.		3
27	Necroptosis: Fifty shades of RIPKs. Molecular and Cellular Oncology, 2015, 2, e965638.	0.7	2
28	Cancer therapy-induced PAFR ligand expression: any role for caspase activity?. Nature Reviews Cancer, 2017, 17, 253-253.	28.4	2
29	Sometimes even apoptosis fails: implications for cancer. Molecular and Cellular Oncology, 2020, 7, 1797430.	0.7	2
30	In Cellulo Evaluation of the Therapeutic Potential of NHC Platinum Compounds in Metastatic Cutaneous Melanoma. International Journal of Molecular Sciences, 2020, 21, 7826.	4.1	2
31	Keeping Cell Death Alive: An Introduction into the French Cell Death Research Network. Biomolecules, 2022, 12, 901.	4.0	2