John A Pickett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6408493/publications.pdf

Version: 2024-02-01

302 papers 17,806 citations

67 h-index 19190 118 g-index

307 all docs

307 docs citations

times ranked

307

12721 citing authors

#	Article	IF	CITATIONS
1	The Use of Push-Pull Strategies in Integrated Pest Management. Annual Review of Entomology, 2007, 52, 375-400.	11.8	1,173
2	Stressful "memories―of plants: Evidence and possible mechanisms. Plant Science, 2007, 173, 603-608.	3.6	807
3	Perception of plant volatile blends by herbivorous insects – Finding the right mix. Phytochemistry, 2011, 72, 1605-1611.	2.9	607
4	Title is missing!. Journal of Chemical Ecology, 1998, 24, 1355-1368.	1.8	382
5	Averting a malaria disaster: will insecticide resistance derail malaria control?. Lancet, The, 2016, 387, 1785-1788.	13.7	366
6	Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecology Letters, 2013, 16, 835-843.	6.4	305
7	Exploiting chemical ecology and species diversity: stem borer and striga control for maize and sorghum in Africa. Pest Management Science, 2000, 56, 957-962.	3.4	284
8	Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10509-10513.	7.1	281
9	Characterisation of Bombyx mori Odorant-binding Proteins Reveals that a General Odorant-binding Protein Discriminates Between Sex Pheromone Components. Journal of Molecular Biology, 2009, 389, 529-545.	4.2	246
10	A climate-adapted push-pull system effectively controls fall armyworm, Spodoptera frugiperda (J E) Tj ETQq0 0 0	rgBT ₁ /Ove	erlock 10 Tf 50 240
11	CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis. Plant Journal, 2003, 33, 923-937.	5.7	238
12	Behavioral and electrophysiological responses of Aphids to host and nonhost plant volatiles. Journal of Chemical Ecology, 1991, 17, 1231-1242.	1.8	232
13	"Plus-C―odorant-binding protein genes in two Drosophila species and the malaria mosquito Anopheles gambiae. Gene, 2004, 327, 117-129.	2.2	217
14	Selective induction of glucosinolates in oilseed rape leaves by methyl jasmonate. Phytochemistry, 1995, 38, 347-350.	2.9	212
15	Chemical ecology and conservation biological control. Biological Control, 2008, 45, 210-224.	3.0	208
16	Maize landraces recruit egg and larval parasitoids in response to egg deposition by a herbivore. Ecology Letters, 2011, 14, 1075-1083.	6.4	204
17	Achieving food security for one million sub-Saharan African poor through push–pull innovation by 2020. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20120284.	4.0	203
18	Identification of Human-Derived Volatile Chemicals that Interfere with Attraction of Aedes aegypti Mosquitoes. Journal of Chemical Ecology, 2008, 34, 308-322.	1.8	200

#	Article	IF	CITATIONS
19	Volatiles functioning as host cues in a blend become nonhost cues when presented alone to the black bean aphid. Animal Behaviour, 2010, 79, 451-457.	1.9	200
20	Exploiting phytochemicals for developing a 'push-pull' crop protection strategy for cereal farmers in Africa. Journal of Experimental Botany, 2010, 61, 4185-4196.	4.8	183
21	The potential for land sparing to offset greenhouse gas emissions from agriculture. Nature Climate Change, 2016, 6, 488-492.	18.8	177
22	<i>cis</i> -Jasmone induces <i>Arabidopsis</i> genes that affect the chemical ecology of multitrophic interactions with aphids and their parasitoids. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4553-4558.	7.1	169
23	Push–pull farming systems. Current Opinion in Biotechnology, 2014, 26, 125-132.	6.6	164
24	Cytochrome P450 CYP79F1 from Arabidopsis Catalyzes the Conversion of Dihomomethionine and Trihomomethionine to the Corresponding Aldoximes in the Biosynthesis of Aliphatic Glucosinolates. Journal of Biological Chemistry, 2001, 276, 11078-11085.	3.4	162
25	Control of witchweed Striga hermonthica by intercropping with Desmodium spp., and the mechanism defined as allelopathic. Journal of Chemical Ecology, 2002, 28, 1871-1885.	1.8	160
26	The cabbage aphid: a walking mustard oil bomb. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2271-2277.	2.6	159
27	Plant volatileâ€mediated signalling and its application in agriculture: successes and challenges. New Phytologist, 2016, 212, 856-870.	7.3	156
28	Methyl salicylate and (\hat{a}^{-}) - $(1R,5S)$ -myrtenal are plant-derived repellents for black bean aphid, Aphis fabae Scop. (Homoptera: Aphididae). Journal of Chemical Ecology, 1994, 20, 2847-2855.	1.8	154
29	CYP83B1 Is the Oxime-metabolizing Enzyme in the Glucosinolate Pathway in Arabidopsis. Journal of Biological Chemistry, 2001, 276, 24790-24796.	3.4	146
30	Resistance mutation conserved between insects and mites unravels the benzoylurea insecticide mode of action on chitin biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14692-14697.	7.1	144
31	Identification of Volatile Compounds Used in Host Location by the Black Bean Aphid, Aphis fabae. Journal of Chemical Ecology, 2008, 34, 1153-1161.	1.8	141
32	The first crop plant genetically engineered to release an insect pheromone for defence. Scientific Reports, 2015, 5, 11183.	3.3	133
33	Plant defence signalling induced by biotic attacks. Current Opinion in Plant Biology, 2007, 10, 387-392.	7.1	125
34	Pushâ€"pull technology: a conservation agriculture approach for integrated management of insect pests, weeds and soil health in Africa. International Journal of Agricultural Sustainability, 2011, 9, 162-170.	3.5	124
35	Isoflavanones from the allelopathic aqueous root exudate of Desmodium uncinatum. Phytochemistry, 2003, 64, 265-273.	2.9	123
36	Genome and EST Analyses and Expression of a Gene Family with Putative Functions in Insect Chemoreception. Chemical Senses, 2006, 31, 453-465.	2.0	123

#	Article	lF	CITATIONS
37	Exploiting semiochemicals in insect control. Pest Management Science, 1999, 55, 225-235.	0.4	118
38	On-farm evaluation of the †push†pull†technology for the control of stemborers and striga weed on maize in western Kenya. Field Crops Research, 2008, 106, 224-233.	5.1	118
39	Combined control of Striga hermonthica and stemborers by maize–Desmodium spp. intercrops. Crop Protection, 2006, 25, 989-995.	2.1	116
40	Repellent activity of catmint, Nepeta cataria, and iridoid nepetalactone isomers against Afro-tropical mosquitoes, ixodid ticks and red poultry mites. Phytochemistry, 2011, 72, 109-114.	2.9	111
41	cis-Jasmone treatment induces resistance in wheat plants against the grain aphid, Sitobion avenae (Fabricius) (Homoptera: Aphididae). Pest Management Science, 2003, 59, 1031-1036.	3.4	109
42	Biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana: recombinant expression and characterization of methylthioalkylmalate synthase, the condensing enzyme of the chain-elongation cycle. Planta, 2004, 218, 1026-1035.	3.2	109
43	<i>Plasmodium</i> -associated changes in human odor attract mosquitoes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4209-E4218.	7.1	105
44	Arbuscular mycorrhizal fungi and aphids interact by changing host plant quality and volatile emission. Functional Ecology, 2014, 28, 375-385.	3.6	103
45	Antennal Electrophysiological Responses of Three Parasitic Wasps to Caterpillar-Induced Volatiles from Maize (Zea mays mays), Cotton (Gossypium herbaceum), and Cowpea (Vigna unguiculata). Journal of Chemical Ecology, 2005, 31, 1023-1038.	1.8	100
46	Title is missing!. Journal of Chemical Ecology, 1998, 24, 1161-1172.	1.8	99
47	Identification of Floral Volatiles Involved in Recognition of Oilseed Rape Flowers, Brassica napus by Honeybees, Apis mellifera. Journal of Chemical Ecology, 1997, 23, 1715-1727.	1.8	98
48	Is quality more important than quantity? Insect behavioural responses to changes in a volatile blend after stemborer oviposition on an African grass. Biology Letters, 2010, 6, 314-317.	2.3	96
49	Aphid sex pheromones: from discovery to commercial production. Phytochemistry, 2003, 62, 651-656.	2.9	95
50	Arm-in-cage testing of natural human-derived mosquito repellents. Malaria Journal, 2010, 9, 239.	2.3	94
51	Revisiting the odorant-binding protein LUSH ofDrosophila melanogaster: evidence for odour recognition and discrimination. FEBS Letters, 2004, 558, 23-26.	2.8	91
52	Isoschaftoside, a C-glycosylflavonoid from Desmodium uncinatum root exudate, is an allelochemical against the development of Striga. Phytochemistry, 2010, 71, 904-908.	2.9	91
53	Binding of the General Odorant Binding Protein of Bombyx mori BmorGOBP2 to the Moth Sex Pheromone Components. Journal of Chemical Ecology, 2010, 36, 1293-1305.	1.8	91
54	The transcriptome of cis-jasmone-induced resistance in Arabidopsis thaliana and its role in indirect defence. Planta, 2010, 232, 1163-1180.	3.2	90

#	Article	IF	CITATIONS
55	Evaluation of Napier grass (Pennisetum purpureum) varieties for use as trap plants for the management of African stemborer (Busseola fusca) in a push?pull strategy. Entomologia Experimentalis Et Applicata, 2007, 124, 201-211.	1.4	86
56	Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts?. PLoS Pathogens, 2016, 12, e1005790.	4.7	86
57	Identification and Expression Profiling of Odorant Binding Proteins and Chemosensory Proteins between Two Wingless Morphs and a Winged Morph of the Cotton Aphid Aphis gossypii Glover. PLoS ONE, 2013, 8, e73524.	2.5	86
58	Title is missing!. Journal of Chemical Ecology, 1999, 25, 1411-1425.	1.8	85
59	The Role of Semiochemicals in the Avoidance of the Seven-Spot Ladybird, Coccinella septempunctata, by the Aphid Parasitoid, Aphidius ervi. Journal of Chemical Ecology, 2004, 30, 1103-1116.	1.8	84
60	Push-Pull: Chemical Ecology-Based Integrated Pest Management Technology. Journal of Chemical Ecology, 2016, 42, 689-697.	1.8	84
61	Climate-adapted companion cropping increases agricultural productivity in East Africa. Field Crops Research, 2015, 180, 118-125.	5.1	83
62	Antiectoparasitic activity of the gum resin, gum haggar, from the East African plant, Commiphora holtziana. Phytochemistry, 2008, 69, 1710-1715.	2.9	82
63	Natural variation in priming of basal resistance: from evolutionary origin to agricultural exploitation. Molecular Plant Pathology, 2010, 11, 817-827.	4.2	79
64	Attraction of the stink bug egg parasitoid <i>TelenomusÂpodisi</i> to defence signals from soybean activated by treatment with <i>cis</i> â€jasmone. Entomologia Experimentalis Et Applicata, 2009, 131, 178-188.	1.4	78
65	Manipulation of parasitoids for aphid pest management: progress and prospects. Pest Management Science, 2003, 59, 149-155.	3.4	77
66	Electrophysiological and behavioural responses of Aphidius ervi (Hymenoptera: Braconidae) to tomato plant volatiles. Chemoecology, 2009, 19, 195-201.	1.1	76
67	Can aphid-induced plant signals be transmitted aerially and through the rhizosphere?. Biochemical Systematics and Ecology, 2001, 29, 1063-1074.	1.3	75
68	cis-Jasmone induces accumulation of defence compounds in wheat, Triticum aestivum. Phytochemistry, 2008, 69, 9-17.	2.9	73
69	Farmers' perceptions of a â€~push–pull' technology for control of cereal stemborers and Striga weed in western Kenya. Crop Protection, 2008, 27, 976-987.	2.1	72
70	Economic performance of the †push†pull†technology for stemborer and Striga control in smallholder farming systems in western Kenya. Crop Protection, 2008, 27, 1084-1097.	2.1	69
71	The aphid sex pheromone cyclopentanoids: Synthesis in the elucidation of structure and biosynthetic pathways. Bioorganic and Medicinal Chemistry, 1996, 4, 351-361.	3.0	68
72	Assessment of Different Legumes for the Control of <i>Striga hermonthica</i> in Maize and Sorghum. Crop Science, 2007, 47, 730-734.	1.8	67

#	Article	IF	CITATIONS
73	Development of field strategies incorporating semiochemicals for the control of the pea and bean weevil, Sitona lineatus L Crop Protection, 1994, 13, 127-135.	2.1	66
74	The role of semiochemicals in host location and non-host avoidance by salmon louse (Lepeophtheirus) Tj ETQq0	0	Overlock 10 T
75	Repellent activity of alligator pepper, Aframomum melegueta, and ginger, Zingiber officinale, against the maize weevil, Sitophilus zeamais. Phytochemistry, 2009, 70, 751-758.	2.9	65
76	Management of witchweed, Striga hermonthica, and stemborers in sorghum, Sorghum bicolor, through intercropping with greenleaf desmodium, Desmodium intortum. International Journal of Pest Management, 2006, 52, 297-302.	1.8	63
77	The semiochemistry of aphids. Natural Product Reports, 2013, 30, 1277.	10.3	59
78	Emerging Agricultural Biotechnologies for Sustainable Agriculture and Food Security. Journal of Agricultural and Food Chemistry, 2016, 64, 383-393.	5.2	59
79	Change in acceptability of barley plants to aphids after exposure to allelochemicals from couch-grass (Elytrigia repens). Journal of Chemical Ecology, 2003, 29, 261-274.	1.8	58
80	New genetic opportunities from legume intercrops for controlling <i>Striga</i> spp. parasitic weeds. Pest Management Science, 2009, 65, 546-552.	3.4	58
81	Aphid sex pheromone components: Age-dependent release by females and species-specific male response. Chemoecology, 1990, 1, 63-68.	1.1	56
82	Identification of Semiochemicals Released by Cotton, Gossypium hirsutum, Upon Infestation by the Cotton Aphid, Aphis gossypii. Journal of Chemical Ecology, 2011, 37, 741-750.	1.8	56
83	The roles of olfaction and vision in host-plant finding by the diamondback moth, Plutella xylostella. Physiological Entomology, 2006, 31, 134-145.	1.5	54
84	Characterisations of odorant-binding proteins in the tsetse fly Glossina morsitans morsitans. Cellular and Molecular Life Sciences, 2010, 67, 919-929.	5.4	54
85	Between plant and diurnal variation in quantities and ratios of volatile compounds emitted by Vicia faba plants. Phytochemistry, 2010, 71, 81-89.	2.9	53
86	Integrated management of <i> Striga hermonthica </i> and cereal stemborers in finger millet (<i> Eleusine coracana </i> (L.) Gaertn.) through intercropping with <i> Desmodium intortum </i> . International Journal of Pest Management, 2010, 56, 145-151.	1.8	53
87	Companion Cropping to Manage Parasitic Plants. Annual Review of Phytopathology, 2010, 48, 161-177.	7.8	53
88	Farmers' perceptions of cotton pests and their management in western Kenya. Crop Protection, 2012, 42, 193-201.	2.1	53
89	Switching on plant genes by external chemical signals. Trends in Plant Science, 2001, 6, 137-139.	8.8	52
90	Herbivory by a Phloem-Feeding Insect Inhibits Floral Volatile Production. PLoS ONE, 2012, 7, e31971.	2.5	52

#	Article	IF	CITATIONS
91	Oviposition Induced Volatile Emissions from African Smallholder Farmers' Maize Varieties. Journal of Chemical Ecology, 2012, 38, 231-234.	1.8	52
92	Aphid antixenosis in cotton is activated by the natural plant defence elicitor cis-jasmone. Phytochemistry, 2012, 78, 81-88.	2.9	52
93	Identification of Human-Derived Volatile Chemicals That Interfere With Attraction of the Scottish Biting Midge and Their Potential Use as Repellents. Journal of Medical Entomology, 2009, 46, 208-219.	1.8	49
94	Activity of quassinoids as antifeedants against aphids. Journal of Chemical Ecology, 1989, 15, 993-998.	1.8	48
95	Cumulative effects and economic benefits of intercropping maize with food legumes on Striga hermonthica infestation. Field Crops Research, 2014, 155, 144-152.	5.1	48
96	Prospects of genetic engineering for robust insect resistance. Current Opinion in Plant Biology, 2014, 19, 59-67.	7.1	48
97	Protecting cows in small holder farms in East Africa from tsetse flies by mimicking the odor profile of a non-host bovid. PLoS Neglected Tropical Diseases, 2017, 11, e0005977.	3.0	48
98	(+)-(10R)-Germacrene A synthase from goldenrod, Solidago canadensis; cDNA isolation, bacterial expression and functional analysis. Phytochemistry, 2002, 60, 691-702.	2.9	46
99	Glucosinolate biosynthesis: demonstration and characterization of the condensing enzyme of the chain elongation cycle in Eruca sativa. Phytochemistry, 2004, 65, 1073-1084.	2.9	46
100	Metabolic Engineering of Plantâ€derived (<i>E</i>)â€Î²â€farnesene Synthase Genes for a Novel Type of Aphidâ€resistant Genetically Modified Crop Plants ^F . Journal of Integrative Plant Biology, 2012, 54, 282-299.	8.5	46
101	Heritability of Attractiveness to Mosquitoes. PLoS ONE, 2015, 10, e0122716.	2.5	46
102	The sex pheromone of the greenbug, <i>Schizaphis graminum</i> . Entomologia Experimentalis Et Applicata, 1988, 48, 91-93.	1.4	44
103	Evaluation of farmers' field days as a dissemination tool for push-pull technology in Western Kenya. Crop Protection, 2009, 28, 225-235.	2.1	44
104	cis-Jasmone Elicits Aphid-Induced Stress Signalling in Potatoes. Journal of Chemical Ecology, 2017, 43, 39-52.	1.8	44
105	Sex Attractant Pheromone from the Rice Stalk Stink Bug, Tibraca limbativentris Stal. Journal of Chemical Ecology, 2006, 32, 2749-2761.	1.8	43
106	DEET repels ORNery mosquitoes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13195-13196.	7.1	43
107	Behavioral Responses of the Leafhopper, Cicadulina storeyi China, a Major Vector of Maize Streak Virus, to Volatile Cues from Intact and Leafhopper-Damaged Maize. Journal of Chemical Ecology, 2011, 37, 40-48.	1.8	43
108	Two-step learning involved in acquiring olfactory preferences for plant volatiles by parasitic wasps. Animal Behaviour, 2012, 83, 1491-1496.	1.9	43

#	Article	IF	CITATIONS
109	Drought-tolerant Desmodium species effectively suppress parasitic striga weed and improve cereal grain yields in western Kenya. Crop Protection, 2017, 98, 94-101.	2.1	43
110	Release of alkenyl isothiocyanates and other volatiles from Brassica rapa seedlings during infection by Alternaria brassicae. Phytochemistry, 1996, 43, 371-374.	2.9	42
111	Laboratory and Field Responses of the Mosquito, Culex quinquefasciatus, to Plant-Derived Culex spp. Oviposition Pheromone and the Oviposition Cue Skatole. Journal of Chemical Ecology, 2004, 30, 965-976.	1.8	42
112	Odours of Plasmodium falciparum-infected participants influence mosquito-host interactions. Scientific Reports, 2017, 7, 9283.	3.3	42
113	Production of (5R,6S)-6-Acetoxy-5-hexadecanolide, the Mosquito Oviposition Pheromone, from the Seed Oil of the Summer Cypress Plant,Kochia scoparia(Chenopodiaceae). Journal of Agricultural and Food Chemistry, 1999, 47, 3411-3415.	5.2	41
114	Comparative Innate Responses of the Aphid Parasitoid Diaeretiella rapae to Alkenyl Glucosinolate Derived Isothiocyanates, Nitriles, and Epithionitriles. Journal of Chemical Ecology, 2008, 34, 1302-1310.	1.8	41
115	Chemical Ecology of Animal and Human Pathogen Vectors in a Changing Global Climate. Journal of Chemical Ecology, 2010, 36, 113-121.	1.8	41
116	Aspects of insect chemical ecology: exploitation of reception and detection as tools for deception of pests and beneficial insects. Physiological Entomology, 2012, 37, 2-9.	1.5	41
117	Responses of Parasitoids to Volatiles Induced by Chilo partellus Oviposition on Teosinte, a Wild Ancestor of Maize. Journal of Chemical Ecology, 2015, 41, 323-329.	1.8	41
118	Convenient synthesis of mosquito oviposition pheromone and a highly fluorinated analog retaining biological activity. Journal of Chemical Ecology, 1990, 16, 1779-1789.	1.8	39
119	Encoding of host and non-host plant odours by receptor neurones in the eucalyptus woodborer, Phoracantha semipunctata (Coleoptera: Cerambycidae). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2002, 188, 121-133.	1.6	38
120	Developments in aspects of ecological phytochemistry: The role of cis-jasmone in inducible defence systems in plants. Phytochemistry, 2007, 68, 2937-2945.	2.9	38
121	Ecological management of cereal stemborers in <scp>A</scp> frican smallholder agriculture through behavioural manipulation. Ecological Entomology, 2015, 40, 70-81.	2.2	38
122	Some fluorine-containing pheromone analogues. Pest Management Science, 1986, 17, 441-448.	0.4	37
123	Role of semiochemicals in mate location by parasitic sea louse, Lepeophtheirus salmonis. Journal of Chemical Ecology, 2002, 28, 2107-2117.	1.8	37
124	Integration of edible beans (Phaseolus vulgaris L.) into the push–pull technology developed for stemborer and Striga control in maize-based cropping systems. Crop Protection, 2009, 28, 997-1006.	2.1	37
125	Host plant selection behaviour of Chilo partellus and its implication for effectiveness of a trap crop. Entomologia Experimentalis Et Applicata, 2011, 138, 40-47.	1.4	37
126	Increasing phosphorus supply is not the mechanism by which arbuscular mycorrhiza increase attractiveness of bean (Vicia faba) to aphids. Journal of Experimental Botany, 2014, 65, 5231-5241.	4.8	37

#	Article	IF	CITATIONS
127	Novel olfactory ligands via terpene synthases. Chemical Communications, 2015, 51, 7550-7553.	4.1	37
128	Use of insect antifeedants against aphid vectors of plant virus disease. Pest Management Science, 1989, 27, 269-276.	0.4	36
129	Laboratory evaluation of antifeedant compounds for inhibiting settling by cereal aphids. Entomologia Experimentalis Et Applicata, 1997, 84, 189-193.	1.4	36
130	Expression of lima bean terpene synthases in rice enhances recruitment of a beneficial enemy of a major rice pest. Plant, Cell and Environment, 2018, 41, 111-120.	5.7	36
131	The Potential of Semiochemicals for Control ofPhorodon humuli(Homoptera: Aphididae). Pest Management Science, 1996, 48, 293-303.	0.4	35
132	Title is missing!. Journal of Chemical Ecology, 2000, 26, 1833-1847.	1.8	35
133	Semiochemicals used in Host Location by the Coffee berry Borer, Hypothenemus hampei. Journal of Chemical Ecology, 2009, 35, 944-950.	1.8	35
134	Responses of Herbivore and Predatory Mites to Tomato Plants Exposed to Jasmonic Acid Seed Treatment. Journal of Chemical Ecology, 2013, 39, 1297-1300.	1.8	35
135	Foraging in a complex environment - semiochemicals support searching behaviour of the seven spot ladybird. European Journal of Entomology, 2005, 102, 365-370.	1.2	35
136	Sex Pheromone Stereochemistry and Purity Affect Field Catches of Male Aphids. Journal of Chemical Ecology, 1997, 23, 2547-2554.	1.8	34
137	Cloning and functional characterisation of a cis-muuroladiene synthase from black peppermint (Mentha $ ilde{A}$ —piperita) and direct evidence for a chemotype unable to synthesise farnesene. Phytochemistry, 2006, 67, 1564-1571.	2.9	34
138	Maize stemborer predator activity under †push†Âpull†M system and Bt-maize: A potential component in managing Bt resistance. International Journal of Pest Management, 2006, 52, 1-10.	1.8	33
139	Vicia faba–Lygus rugulipennis Interactions: Induced Plant Volatiles and Sex Pheromone Enhancement. Journal of Chemical Ecology, 2009, 35, 201-208.	1.8	33
140	Activation of defence in sweet pepper, <i>Capsicum annum</i> , by <i>cis</i> êjasmone, and its impact on aphid and aphid parasitoid behaviour. Pest Management Science, 2012, 68, 1419-1429.	3.4	33
141	Identification of Two Sex Pheromone Components of the Potato Aphid, Macrosiphum euphorbiae (Thomas). Journal of Chemical Ecology, 2004, 30, 819-834.	1.8	32
142	Chemical stimuli supporting foraging behaviour of Coccinella septempunctata L. (Coleoptera:) Tj ETQq0 0 0 rgBT	/Qverlock	10 Tf 50 14:
143	Development of semiochemical attractants for monitoring bean seed beetle, <i>Bruchus rufimanus</i> . Pest Management Science, 2011, 67, 1303-1308.	3.4	32
144	Priming of Production in Maize of Volatile Organic Defence Compounds by the Natural Plant Activator cis-Jasmone. PLoS ONE, 2013, 8, e62299.	2.5	32

#	Article	IF	Citations
145	Attractiveness of Host Plant Volatile Extracts to the Asian Citrus Psyllid, Diaphorina citri, is Reduced by Terpenoids from the Non-Host Cashew. Journal of Chemical Ecology, 2018, 44, 397-405.	1.8	32
146	Secondary plant metabolites as targets for genetic modification of crop plants for pest resistance. Pest Management Science, 1989, 27, 191-201.	0.4	31
147	Volatile isoprenoids that control insect behaviour and development. Natural Product Reports, 1999, 16, 39-54.	10.3	31
148	Food security: intensification of agriculture is essential, for which current tools must be defended and new sustainable technologies invented. Food and Energy Security, 2013, 2, 167-173.	4.3	31
149	Attraction of field-flying aphid males to synthetic sex pheromone. Chemoecology, 1992, 3, 113-117.	1.1	30
150	Chemical precursors for studying the effects of glucosinolate catabolites on diseases and pests of oilseed rape (Brassica napus) or related plants. Pest Management Science, 1993, 39, 271-278.	0.4	30
151	Title is missing!. Plant and Soil, 2001, 232, 31-39.	3.7	30
152	Effects of mulching, N-fertilization and intercropping with Desmodium uncinatum on Striga hermonthica infestation in maize. Crop Protection, 2013, 44, 44-49.	2.1	30
153	Identification of non-host semiochemicals for the brown dog tick, Rhipicephalus sanguineus sensu lato (Acari: Ixodidae), from tick-resistant beagles, Canis lupus familiaris. Ticks and Tick-borne Diseases, 2015, 6, 676-682.	2.7	30
154	Plant Volatiles Yielding New Ways to Exploit Plant Defence., 0,, 161-173.		30
155	Plant signalling and induced defence in insect attack. Molecular Plant Pathology, 2000, 1, 67-72.	4.2	29
156	Host Recognition by the Specialist Hoverfly Microdon mutabilis, a Social Parasite of the Ant Formica lemani. Journal of Chemical Ecology, 2008, 34, 168-178.	1.8	29
157	Emerging roles in plant defense forcis-jasmone-induced cytochrome P450 CYP81D11. Plant Signaling and Behavior, 2011, 6, 563-565.	2.4	29
158	Underground allies: How and why do mycelial networks help plants defend themselves?. BioEssays, 2014, 36, 21-26.	2.5	29
159	Synthesis of (2S,7S)-dibutyroxynonane, the sex pheromone of the orange wheat blossom midge, Sitodiplosis mosellana (GA©hin) (Diptera: Cecidomyiidae), by diastereoselective silicon-tethered ring-closing metathesis. Tetrahedron Letters, 2007, 48, 5991-5994.	1.4	28
160	The natural plant stress elicitor cis-jasmone causes cultivar-dependent reduction in growth of the stink bug, Euschistus heros and associated changes in flavonoid concentrations in soybean, Glycine max. Phytochemistry, 2016, 131, 84-91.	2.9	28
161	Searching for wheat resistance to aphids and wheat bulb fly in the historical Watkins and Gediflux wheat collections. Annals of Applied Biology, 2017, 170, 179-188.	2.5	28
162	Elucidation of the biosynthesis of the di-C-glycosylflavone isoschaftoside, an allelopathic component from Desmodium spp. that inhibits Striga spp. development. Phytochemistry, 2012, 84, 169-176.	2.9	27

#	Article	IF	CITATIONS
163	Nepetalactol oxidoreductase in trichomes of the catmint Nepeta racemosa. Phytochemistry, 1998, 48, 421-427.	2.9	26
164	(E)- \hat{l}^2 -Farnesene synthase genes affect aphid (Myzus persicae) infestation in tobacco (Nicotiana tabacum). Functional and Integrative Genomics, 2012, 12, 207-213.	3.5	26
165	Molecular characterization of two isoforms of a farnesyl pyrophosphate synthase gene in wheat and their roles in sesquiterpene synthesis and inducible defence against aphid infestation. New Phytologist, 2015, 206, 1101-1115.	7.3	26
166	Prospects for management of whitefly using plant semiochemicals, compared with related pests. Pest Management Science, 2018, 74, 2405-2411.	3.4	26
167	Structure/activity studies on aphid alarm pheromone derivatives and their field use against transmission of barley yellow dwarf virus. Pest Management Science, 1988, 22, 17-30.	0.4	25
168	C-methylated and C-prenylated isoflavonoids from root extract of Desmodium uncinatum. Phytochemistry, 2007, 68, 646-651.	2.9	25
169	Attraction of Chrysoperla carnea complex and Chrysopa spp. lacewings (Neuroptera: Chrysopidae) to aphid sex pheromone components and a synthetic blend of floral compounds in Hungary. Pest Management Science, 2010, 66, 1374-1379.	3.4	25
170	Responses of the twoâ€spotted oak buprestid, <i>Agrilus biguttatus</i> (Coleoptera: Buprestidae), to host tree volatiles. Pest Management Science, 2016, 72, 845-851.	3.4	25
171	A maize landrace that emits defense volatiles in response toÂherbivore eggs possesses a strongly inducible terpene synthase gene. Ecology and Evolution, 2017, 7, 2835-2845.	1.9	25
172	Olfactory recognition of host plants in the absence of host-specific volatile compounds. Communicative and Integrative Biology, 2008, 1, 167-169.	1.4	24
173	Non-target effects of the â€~push–pull' habitat management strategy: Parasitoid activity and soil fauna abundance. Crop Protection, 2009, 28, 1045-1051.	2.1	24
174	Red oilseed rape? The potential for manipulation of petal colour in control strategies for the pollen beetle (Meligethes aeneus). Arthropod-Plant Interactions, 2013, 7, 249-258.	1.1	24
175	Semiochemistry of the Scarabaeoidea. Journal of Chemical Ecology, 2014, 40, 190-210.	1.8	24
176	Interactions Between Host-plant Volatiles and the Sex Pheromones of the Bird Cherry-oat Aphid, Rhopalosiphum padi and the Damson-hop Aphid, Phorodon humuli. Journal of Chemical Ecology, 2006, 33, 157-165.	1.8	23
177	C-Glucosylflavonoid biosynthesis from 2-hydroxynaringenin by Desmodium uncinatum (Jacq.) (Fabaceae). Tetrahedron Letters, 2009, 50, 5656-5659.	1.4	23
178	Learning is involved in the response of parasitic wasps Aphidius ervi (Haliday) (Hymenoptera:) Tj ETQq0 0 0 rgBT Acyrthosiphon pisum (Harris) (Homoptera: Aphididae). Applied Entomology and Zoology, 2009, 44, 23-28.	/Overlock 1.2	10 Tf 50 147 23
179	Duration analysis of technology adoption effects of dissemination pathways: A case of †push†pull†technology for control of Striga weeds and stemborers in Western Kenya. Crop Protection, 2011, 30, 531-538.	2.1	23
180	Tracking bed bugs (<i>Cimex lectularius</i>): a study of the effect of physiological and extrinsic factors on the response to bed bug-derived volatiles. Journal of Experimental Biology, 2013, 216, 460-9.	1.7	23

#	Article	IF	CITATIONS
181	Push-Pull Farming System Controls Fall Armyworm: Lessons from Africa. Outlooks on Pest Management, 2018, 29, 220-224.	0.2	23
182	Functional characterisation of two cytochrome $i_2 \frac{1}{2} b_5$ -fusion desaturases from Anemone leveillei: the unexpected identification of a fatty acid ?6-desaturase. Planta, 2003, 217, 983-992.	3.2	22
183	Revisiting the Male-Produced Aggregation Pheromone of the Lesser Mealworm, <i>Alphitobius diaperinus</i> (Coleoptera, Tenebrionidae): Identification of a Six-Component Pheromone from a Brazilian Population. Journal of Agricultural and Food Chemistry, 2016, 64, 6809-6818.	5.2	22
184	Suitability of brachiaria grass as a trap crop for management of <i><scp>C</scp>hilo partellus</i> Entomologia Experimentalis Et Applicata, 2018, 166, 139-148.	1.4	22
185	cis-Jasmone switches on plant defence against insects. Outlooks on Pest Management, 2003, 14, 96.	0.2	21
186	The Role of Mosquito Olfaction in Oviposition Site Location and in the Avoidance of Unsuitable Hosts. Novartis Foundation Symposium, 1996, 200, 109-123.	1.1	21
187	Volatile components in dorsal gland secretions of the collared peccary, Tayassu tajacu (Tayassuidae,) Tj ETQq1	1 0.784314 1.8	rgBT Overlo
188	Modifying the Alkylglucosinolate Profile in Arabidopsis thaliana Alters the Tritrophic Interaction with the Herbivore Brevicoryne brassicae and Parasitoid Diaeretiella rapae. Journal of Chemical Ecology, 2009, 35, 958-969.	1.8	20
189	Recilia banda Kramer (Hemiptera: Cicadellidae), a vector of Napier stunt phytoplasma in Kenya. Die Naturwissenschaften, 2009, 96, 1169-1176.	1.6	20
190	Repellent activity of Nepeta grandiflora and Nepeta clarkei (Lamiaceae) against the cereal aphid, Sitobion avenae (Homoptera: Aphididae). Phytochemistry Letters, 2010, 3, 139-142.	1.2	20
191	Delivering sustainable crop protection systems via the seed: exploiting natural constitutive and inducible defence pathways. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20120281.	4.0	20
192	Genome wide association analysis of a stemborer egg induced "call-for-help―defence trait in maize. Scientific Reports, 2020, 10, 11205.	3.3	20
193	Production of Solvent-Free Isomerized Extracts. Journal of the American Society of Brewing Chemists, 1977, 35, 187-191.	1.1	19
194	Structure, ratios and patterns of release in the sex pheromone of an aphid, Dysaphis plantaginea. Journal of Experimental Biology, 2007, 210, 4335-4344.	1.7	19
195	Identification of Host Kairomones from Maize, Zea mays, for the Maize Weevil, Sitophilus zeamais. Journal of Chemical Ecology, 2012, 38, 1402-1409.	1.8	19
196	Variability in herbivore-induced defence signalling across different maize genotypes impacts significantly on natural enemy foraging behaviour. Journal of Pest Science, 2019, 92, 723-736.	3.7	19
197	Molasses Grass Induces Direct and Indirect Defense Responses in Neighbouring Maize Plants. Journal of Chemical Ecology, 2019, 45, 982-992.	1.8	19
198	Responses of the aphids Phorodon humuli and Rhopalosiphum padi to sex pheromone stereochemistry in the field. Journal of Chemical Ecology, 2003, 29, 2225-2234.	1.8	18

#	Article	IF	CITATIONS
199	Antifeedant Compounds from Three Species of Apiaceae Active Against the Field Slug, Deroceras reticulatum (Muller). Journal of Chemical Ecology, 2004, 30, 563-576.	1.8	17
200	Orientation and Feeding Responses of the Pollen Beetle, Meligethes aeneus, to Candytuft, Iberis amara. Journal of Chemical Ecology, 2004, 30, 913-925.	1.8	17
201	Dolichodial: A New Aphid Sex Pheromone Component?. Journal of Chemical Ecology, 2008, 34, 1575-1583.	1.8	17
202	Electrophysiological and behavioural responses of the pollen beetle, Meligethes aeneus, to volatiles from a non-host plant, lavender, Lavandula angustifolia (Lamiaceae). Arthropod-Plant Interactions, 2008, 2, 109-115.	1.1	17
203	Host foraging for differentially adapted Brassica-feeding aphids by the Braconid parasitoid < i > Diaeretiella rapae < / i > . Plant Signaling and Behavior, 2008, 3, 580-582.	2.4	17
204	Detection, Identification, and Significance of Phytoplasmas in Wild Grasses in East Africa. Plant Disease, 2016, 100, 108-115.	1.4	17
205	An Indirect Defence Trait Mediated through Egg-Induced Maize Volatiles from Neighbouring Plants. PLoS ONE, 2016, 11, e0158744.	2.5	17
206	Characterization of the \hat{l} "11-palmitoyl-CoA-desaturase from Spodoptera littoralis (lepidoptera:) Tj ETQq0 0 0 rgB	T /Overloo	ck 10 Tf 50 46
207	Use of honey bees (<i>Apis mellifera</i> L.) to detect the presence of Mediterranean fruit fly (<i>Ceratitis capitata</i> Wiedemann) larvae in Valencia oranges. Journal of the Science of Food and Agriculture, 2012, 92, 2050-2054.	3.5	16
208	Oviposition acceptance and larval development of <i><i><i><scp>C</scp>hilo partellus</i> stemborers in droughtâ€stressed wild and cultivated grasses of <scp>E</scp>ast <scp>A</scp>frica. Entomologia Experimentalis Et Applicata, 2014, 151, 209-217.</i></i>	1.4	16
209	Identification of Volatile Compounds Involved in Host Location by Anthonomus grandis (Coleoptera:) Tj ETQq1 1	. 0 <u>.7</u> 8431	4 rgBT /Overlo
210	Species-specific alterations in Anopheles mosquito olfactory responses caused by Plasmodium infection. Scientific Reports, 2019, 9, 3396.	3.3	16
211	Farmers' Perception and Evaluation of Brachiaria Grass (Brachiaria spp.) Genotypes for Smallholder Cereal-Livestock Production in East Africa. Agriculture (Switzerland), 2020, 10, 268.	3.1	16
212	Responses of <i>Myzus persicae</i> to the repellent polygodial in choice and no hoice video assays with young and mature leaf tissue. Entomologia Experimentalis Et Applicata, 1995, 74, 91-94.	1.4	15
213	Airborne Volatiles from <i>Melinis minutiflora</i> P. Beauv., a Non-Host Plant of the Spotted Stem Borer. Journal of Essential Oil Research, 2000, 12, 221-224.	2.7	15
214	Volatile components in dorsal gland secretions of the white-lipped peccary, Tayassu pecari, from Bolivia. Journal of Chemical Ecology, 2001, 27, 2459-2469.	1.8	15
215	Napier grass stunt disease in East Africa: Farmers' perspectives on disease management. Crop Protection, 2015, 71, 116-124.	2.1	15
216	Identification of a non-host semiochemical from tick-resistant donkeys (Equus asinus) against Amblyomma sculptum ticks. Ticks and Tick-borne Diseases, 2019, 10, 621-627.	2.7	15

#	Article	IF	CITATIONS
217	Development of pull and push–pull systems for management of lesser mealworm, <i>Alphitobius diaperinus</i> , in poultry houses using alarm and aggregation pheromones. Pest Management Science, 2019, 75, 1107-1114.	3.4	15
218	Multiple Roles of a Male-Specific Compound in the Sexual Behavior of the Dried Bean Beetle, Acanthoscelides Obtectus. Journal of Chemical Ecology, 2015, 41, 287-293.	1.8	14
219	A note on the mosquito oviposition pheromone. Pest Management Science, 1989, 27, 277-280.	0.4	13
220	Natural variation in responsiveness of Arabidopsis thaliana to methyl jasmonate is developmentally regulated. Planta, 2008, 228, 1021-1028.	3.2	13
221	Electrophysiological responses and field attraction of the grey corn weevil, Tanymecus (Episomecus) dilaticollis Gyllenhal (Coleoptera: Curculionidae) to synthetic plant volatiles. Chemoecology, 2010, 20, 199-206.	1.1	13
222	Three Aphid-Transmitted Viruses Encourage Vector Migration From Infected Common Bean (Phaseolus) Tj ETQq 2020, 11, 613772.	0 0 0 rgB1 3.6	「/Overlock 10 13
223	Sensing the Danger Signals: cis-Jasmone Reduces Aphid Performance on Potato and Modulates the Magnitude of Released Volatiles. Frontiers in Ecology and Evolution, 2020, 7, .	2.2	13
224	Responses of the stem borer larval endoparasitoidCotesia flavipes(Hymenoptera: Braconidae) to plant derived synomones: Laboratory and field cage experiments. Biocontrol Science and Technology, 2005, 15, 271-279.	1.3	12
225	The use of Pluronic F-127 to study the development of the potato cyst nematode, Globodera pallida. Nematology, 2012, 14, 869-873.	0.6	12
226	The Sex Pheromones of Mealy Plum (Hyalopterus pruni) and Leaf-Curl Plum (Brachycaudus helichrysi) Aphids: Identification and Field Trapping of Male and Gynoparous Aphids in Prune Orchards. Journal of Chemical Ecology, 2012, 38, 576-583.	1.8	12
227	Development of a female attractant for the click beetle pest <i>Agriotes brevis</i> . Pest Management Science, 2014, 70, 610-614.	3.4	12
228	Responses of the putative trachoma vector, Musca sorbens, to volatile semiochemicals from human faeces. PLoS Neglected Tropical Diseases, 2020, 14, e0007719.	3.0	12
229	Effects of molasses grass, Melinis minutiflora volatiles on the foraging behavior of the cereal stemborer parasitoid, Cotesia sesamiae. Journal of Chemical Ecology, 2003, 29, 731-745.	1.8	11
230	Behaviour and biology of Chilo partellus (Swinhoe) on Striga hermonthica (Del.) Benth. infested and uninfested maize plants. Crop Protection, 2007, 26, 998-1005.	2.1	11
231	Production of semiochemical and allelobiotic agents as a consequence of aphid feeding. Chemoecology, 2010, 20, 89-96.	1.1	11
232	Behaviour and biology of <i><scp>C</scp>hilo partellus</i> on maize landraces. Entomologia Experimentalis Et Applicata, 2014, 153, 170-181.	1.4	11
233	Field evaluation of synthetic aphid sex pheromone in enhancing suppression of aphid abundance by their natural enemies. BioControl, 2016, 61, 485-496.	2.0	11
234	Responses of the blister beetle <i>Hycleus apicicornis</i> to visual stimuli. Physiological Entomology, 2011, 36, 220-229.	1.5	10

#	Article	IF	Citations
235	Chemical Ecology in the Post Genomics Era. Journal of Chemical Ecology, 2014, 40, 319-319.	1.8	10
236	Pheromone Bouquet of the Dried Bean Beetle, <i>Acanthoscelides obtectus</i> (Col.: Chrysomelidae), Now Complete. European Journal of Organic Chemistry, 2015, 2015, 4843-4846.	2.4	10
237	Maize Landraces are Less Affected by Striga hermonthica Relative to Hybrids in Western Kenya. Weed Technology, 2016, 30, 21-28.	0.9	10
238	The Significance of Napier Grass Stunt Phytoplasma and Its Transmission to Cereals and Sugarcane. Journal of Phytopathology, 2016, 164, 378-385.	1.0	10
239	Brown dog tick, Rhipicephalus sanguineus sensu lato, infestation of susceptible dog hosts is reduced by slow release of semiochemicals from a less susceptible host. Ticks and Tick-borne Diseases, 2017, 8, 139-145.	2.7	10
240	Development of an attract-and-infect device for biological control of lesser mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae) in poultry houses. Biological Control, 2020, 149, 104326.	3.0	10
241	Plant Volatile Analogues Strengthen Attractiveness to Insect. PLoS ONE, 2014, 9, e99142.	2.5	10
242	Composição quÃmica da glândula abdominal da fêmea da mariposa Castnia licus (Drury) (Lepidoptera:Castniidae): possÃveis feromônios e precursores. Quimica Nova, 1999, 22, 645-648.	0.3	10
243	Recent Developments in Imparting Hop Character to Beer. Journal of the American Society of Brewing Chemists, 1978, 36, 69-72.	1.1	9
244	Verbena × hybridaflower volatiles attractive to Western flower thrips,Frankliniella occidentalis. Pest Management Science, 1999, 55, 660-662.	0.4	9
245	Farmers' knowledge and perceptions of blister beetles,Hycleusspp. (Coleoptera: Meloidae), as pest herbivores ofDesmodiumlegumes in western Kenya. International Journal of Pest Management, 2012, 58, 165-174.	1.8	9
246	A comparison of the levels of hydroxamic acids in <i>Aegilops speltoides</i> and a hexaploid wheat and effects on <i>Rhopalosiphum padi</i> behaviour and fecundity. Acta Biologica Hungarica, 2014, 65, 38-46.	0.7	9
247	The effect of artificial diet on the production of alarm pheromone byMyzus persicae. Physiological Entomology, 2014, 39, 285-291.	1.5	9
248	Vertebrate pheromones and other semiochemicals: the potential for accommodating complexity in signalling by volatile compounds for vertebrate management. Biochemical Society Transactions, 2014, 42, 846-850.	3.4	9
249	Aphid Sex Pheromone Compounds Interfere with Attraction of Common Green Lacewings to Floral Bait. Journal of Chemical Ecology, 2015, 41, 550-556.	1.8	9
250	Quantification of brown dog tick repellents, 2-hexanone and benzaldehyde, and release from tick-resistant beagles, Canis lupus familiaris. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1022, 64-69.	2.3	9
251	DIMBOA levels in hexaploid Brazilian wheat are not associated with antibiosis against the cereal aphids Rhopalosiphum padi and Sitobion avenae. Theoretical and Experimental Plant Physiology, 2017, 29, 61-75.	2.4	9
252	Skin microbiome alters attractiveness to Anopheles mosquitoes. BMC Microbiology, 2022, 22, 98.	3.3	9

#	Article	IF	CITATIONS
253	Isolation and expression pattern of two putative acylâ€ACP desaturase cDNAs from Bassia scoparia. Journal of Experimental Botany, 2004, 55, 787-789.	4.8	8
254	Electrophysiological and behavioral responses of female African rice gall midge, Orseolia oryzivora Harris and Gagné, to host plant volatiles. Journal of Chemical Ecology, 2017, 43, 13-16.	1.8	8
255	Attractiveness of host banana leaf materials to the banana weevil, <scp><i>Cosmopolites sordidus</i></scp> in Ghana for development of field management strategies. Pest Management Science, 2019, 75, 549-555.	3.4	8
256	Iridoid Sex Pheromone Biosynthesis in Aphids Mimics Iridoidâ€Producing Plants. Chemistry - A European Journal, 2021, 27, 7231-7234.	3.3	8
257	Field evaluation of a new third generation push-pull technology for control of striga weed, stemborers, and fall armyworm in western Kenya. Experimental Agriculture, 2021, 57, 301-315.	0.9	8
258	Alligator pepper, Aframomum melegueta, and ginger, Zingiber officinale, reduce stored maize infestation by the maize weevil, Sitophilus zeamais in traditional African granaries. Crop Protection, 2012, 32, 99-103.	2.1	7
259	A diastereoselective synthesis of (1SR,3SR,7RS)-3-methyl-î±-himachalene, the sex pheromone of the sandfly, Lutzomyia longipalpis (Diptera: Psychodidae). Tetrahedron, 2012, 68, 5102-5108.	1.9	7
260	The biosynthesis of allelopathic di-C-glycosylflavones from the roots of Desmodium incanum (G. Mey.) DC. Organic and Biomolecular Chemistry, 2015, 13, 11663-11673.	2.8	7
261	Insecticidal effects of deltamethrin in laboratory and field populations of Culicoides species: how effective are host-contact reduction methods in India?. Parasites and Vectors, 2017, 10, 54.	2.5	7
262	Isolation and identification of floral attractants from a nectar plant for the dried bean beetle, <scp><i>Acanthoscelides obtectus</i></scp> (Coleoptera: Chrysomelidae, Bruchinae). Pest Management Science, 2018, 74, 2069-2075.	3.4	7
263	Possibilities for rationally exploiting co-evolution in addressing resistance to insecticides, and beyond. Pesticide Biochemistry and Physiology, 2018, 151, 18-24.	3.6	7
264	Genotypic response of brachiaria (Urochloa spp.) to spider mite (Oligonychus trichardti) (Acari:) Tj ETQq0 0 0 rgB	T <u> </u> Qverloo	:k 10 Tf 50 30
265	Priming of indirect defence responses in maize is shown to be genotype-specific. Arthropod-Plant Interactions, 2021, 15, 313-328.	1.1	7
266	Juvenile hormone-like activity of (E)- \hat{l}^2 -farnesene derivatives. Agronomy for Sustainable Development, 1987, 7, 523-529.	0.8	7
267	FIELD DEVELOPMENTS ON <i>STRIGA</i> CONTROL BY <i>DESMODIUM</i> INTERCROPS IN A "PUSH-PULL" STRATEGY., 2007,, 241-252.		7
268	Disruption of hostâ€seeking behaviour by the salmon louse, <i>Lepeophtheirus salmonis, </i> botanically derived repellents. Journal of Fish Diseases, 2017, 40, 495-505.	1.9	6
269	Host shift induces changes in mate choice of the seed predator Acanthoscelides obtectus via altered chemical signalling. PLoS ONE, 2018, 13, e0206144.	2.5	6
270	Overexpression of the homoterpene synthase gene, <scp>OsCYP92C21</scp> , increases emissions of volatiles mediating tritrophic interactions in rice. Plant, Cell and Environment, 2021, 44, 948-963.	5.7	6

#	Article	IF	CITATIONS
271	Chemical Identity and Functional Characterization of Semiochemicals That Promote the Interactions between Rice Plant and Rice Major Pest <i>Nilaparvata lugens</i> . Journal of Agricultural and Food Chemistry, 2021, 69, 4635-4644.	5. 2	6
272	Sex Pheromone of the Alfalfa Plant Bug, Adelphocoris lineolatus: Pheromone Composition and Antagonistic Effect of 1-Hexanol (Hemiptera: Miridae). Journal of Chemical Ecology, 2021, 47, 525-533.	1.8	6
273	Semiochemicals for aphid control. Journal of Biological Education, 1989, 23, 180-186.	1.5	5
274	Pheromones: will their promise in insect pest control ever be achieved? Bulletin of Entomological Research, 1991, 81, 229-232.	1.0	5
275	Sex pheromone of the leaf-miner Phyllonorycter platani: (Z10)-tetradecenyl acetate. Journal of Chemical Ecology, 2003, 29, 2391-2396.	1.8	5
276	Environmentally vulnerable noble chafers exhibit unusual pheromone-mediated behaviour. PLoS ONE, 2018, 13, e0206526.	2.5	5
277	Bumblebee electric charge stimulates floral volatile emissions in Petunia integrifolia but not in Antirrhinum majus. Die Naturwissenschaften, 2021, 108, 44.	1.6	5
278	(2R,5S)-Theaspirane Identified as the Kairomone for the Banana Weevil, Cosmopolites sordidus, from Attractive Senesced Leaves of the Host Banana, Musa spp Chemistry - A European Journal, 2018, 24, 9217-9219.	3.3	4
279	Removing constraints to sustainable food production: new ways to exploit secondary metabolism from companion planting and GM. Pest Management Science, 2019, 75, 2346-2352.	3.4	4
280	Plant–insect interactions. Phytochemistry, 2011, 72, 1495-1496.	2.9	3
281	Conspecific and Heterogeneric Lacewings Respond to (Z)-4-Tridecene Identified from Chrysopa formosa (Neuroptera: Chrysopidae). Journal of Chemical Ecology, 2018, 44, 137-146.	1.8	3
282	Characterizing human odorant signals: insights from insect semiochemistry and <i>in silico</i> modelling. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190263.	4.0	3
283	Aphid resistance in wheat varieties. Communications in Agricultural and Applied Biological Sciences, 2009, 74, 233-41.	0.0	3
284	Aphid sex pheromones: manipulation of beneficial insects for aphid population control. Pest Management Science, 1999, 55, 208-209.	0.4	2
285	Michael Elliott CBE. 30 September 1924 â€" 17 October 2007. Biographical Memoirs of Fellows of the Royal Society, 2016, 62, 109-123.	0.1	2
286	Behavioral Response of the Lacewing Chrysopa cognata to both Aphis gossypii-induced Plant Volatiles and Chrysopa cognata-derived Volatiles. Korean Journal of Applied Entomology, 2014, 53, 7-13.	0.3	2
287	Repellency and Composition of Essential Oils of Selected Ethnobotanical Plants Used in Western Kenya against Bites of <i>Anopheles gambiae</i> Sensu Stricto. Journal of Essential Oil-bearing Plants: JEOP, 2020, 23, 432-441.	1.9	1
288	Field validation of senesced banana leaf extracts for trapping banana weevils on smallholder banana/plantain farms. Journal of Applied Entomology, 2021, 145, 26-35.	1.8	1

#	Article	IF	CITATIONS
289	Transcriptional profile of genes involved in the production of terpenes and glyceollins in response to biotic stresses in soybean. Genetics and Molecular Biology, 2020, 43, e20190388.	1.3	1
290	Advances in the chemistry of insect control, III. Endeavour, 1995, 19, 92.	0.4	0
291	Bitten by the bug. Trends in Plant Science, 1999, 4, 160.	8.8	0
292	Delivering resistance to a major constraint for rainâ€fed rice production. New Phytologist, 2011, 192, 792-794.	7.3	0
293	Indirect routes to reproductive success. ELife, 2012, 1, e00240.	6.0	0
294	Persistence and efficacy of a new formulation based on dog allomonal repellents against Rhipicephalus sanguineus sensu lato tick. Brazilian Journal of Veterinary Parasitology, 2018, 27, 313-318.	0.7	0
295	Exploiting Chemical Ecology for Developing Novel Integrated Pest Management Strategies for Africa. Sustainability in Plant and Crop Protection, 2019, , 165-183.	0.4	0
296	Chemical Ecology of Plants and Insects Helping Crops to Help Themselves. Interdisciplinary Science Reviews, 1993, 18, 68-72.	1.4	0
297	Isolation of two putative acyl-acyl carrier protein desaturase enzymes from Kochia scoparia. Biochemical Society Transactions, 2000, 28, 623-4.	3.4	0
298	EXPLOITING CHEMICAL ECOLOGY FOR LIVELIHOOD IMPROVEMENT OF SMALL HOLDER FARMERS IN KENYA. Communications in Agricultural and Applied Biological Sciences, 2014, 79, 265-77.	0.0	0
299	Title is missing!. , 2020, 14, e0007719.		0
300	Title is missing!. , 2020, 14, e0007719.		0
301	Title is missing!. , 2020, 14, e0007719.		0
302	Title is missing!. , 2020, 14, e0007719.		0