Weijuan Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6408358/publications.pdf

Version: 2024-02-01

16 papers	254 citations	933447 10 h-index	996975 15 g-index
16	16	16	353
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Characterization of ionized lignin model compounds with αâ€Oâ€4 linkages by positive―and negative―on mode electrospray ionization tandem mass spectrometry based on collisionâ€activated dissociation. Rapid Communications in Mass Spectrometry, 2021, 35, e9057.	1.5	2
2	Reactivity of para-benzynes in solution and in the gas phase. Tetrahedron Letters, 2021, 74, 153161.	1.4	3
3	Mechanistic insight into the oxazoline decomposition of DFC-M, a synthetic intermediate of florfenicol. Journal of Pharmaceutical and Biomedical Analysis, 2019, 174, 235-241.	2.8	O
4	Rapid Characterization of Insulin Modifications and Sequence Variations by Proteinase K Digestion and UHPLC-ESI-MS. Journal of the American Society for Mass Spectrometry, 2018, 29, 853-858.	2.8	2
5	Polar Effects Control the Gasâ€Phase Reactivity of <i>para</i> â€Benzyne Analogs. ChemPhysChem, 2018, 19, 2839-2842.	2.1	3
6	Effect of Genetics, Environment, and Phenotype on the Metabolome of Maize Hybrids Using GC/MS and LC/MS. Journal of Agricultural and Food Chemistry, 2017, 65, 5215-5225.	5.2	35
7	Initial Products and Reaction Mechanisms for Fast Pyrolysis of Synthetic Gâ€Lignin Oligomers with βâ€Oâ€4 Linkages via Onâ€Line Mass Spectrometry and Quantum Chemical Calculations. ChemistrySelect, 2017, 2, 7185-7193.	1.5	12
8	(\hat{a}°)ESI/CAD MS ^{<i>n</i>} Procedure for Sequencing Lignin Oligomers Based on a Study of Synthetic Model Compounds with \hat{l}^2 -O-4 and 5-5 Linkages. Analytical Chemistry, 2017, 89, 13089-13096.	6.5	22
9	Characterization of aromatic organosulfur model compounds relevant to fossil fuels by using atmospheric pressure chemical ionization with CS _{2} and highâ€resolution tandem mass spectrometry . Rapid Communications in Mass Spectrometry, 2016, 30, 953-962.	1.5	15
10	Gas-phase ion-molecule reactions for the identification of the sulfone functionality in protonated analytes in a linear quadrupole ion trap mass spectrometer. Rapid Communications in Mass Spectrometry, 2016, 30, 1435-1441.	1.5	9
11	Identification of N-Oxide and Sulfoxide Functionalities in Protonated Drug Metabolites by Using Ion–Molecule Reactions Followed by Collisionally Activated Dissociation in a Linear Quadrupole Ion Trap Mass Spectrometer. Journal of Organic Chemistry, 2016, 81, 575-586.	3.2	22
12	Glycolysis Inhibitors for Anticancer Therapy: A Review of Recent Patents. Recent Patents on Anti-Cancer Drug Discovery, 2016, 11, 297-308.	1.6	55
13	Mass spectrometric identification of the N â€monosubstituted N â€hydroxylamino functionality in protonated analytes via ion/molecule reactions in tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2015, 29, 730-734.	1.5	13
14	Structural Comparison of Asphaltenes of Different Origins Using Multi-stage Tandem Mass Spectrometry. Energy & Spe	5.1	33
15	Identification of the sulfoxide functionality in protonated analytes via ion/molecule reactions in linear quadrupole ion trap mass spectrometry. Analyst, The, 2014, 139, 4296-4302.	3.5	12
16	Identification of the Sulfone Functionality in Protonated Analytes via Ion/Molecule Reactions in a Linear Quadrupole Ion Trap Mass Spectrometer. Journal of Organic Chemistry, 2014, 79, 2883-2889.	3.2	16