Izabela StÄphiak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6408100/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Sensitive, Fast Response and Selective Glucose Detection Based on CuO/Nitrogenâ€doped Carbon Nonâ€enzymatic Sensor. Electroanalysis, 2022, 34, 1725-1734.	2.9	5
2	Extreme Biomimetics: Designing of the First Nanostructured 3D Spongin–Atacamite Composite and its Application. Advanced Materials, 2021, 33, e2101682.	21.0	21
3	Electrochemical Approach for Isolation of Chitin from the Skeleton of the Black Coral Cirrhipathes sp. (Antipatharia). Marine Drugs, 2020, 18, 297.	4.6	19
4	Electrochemical method for isolation of chitinous 3D scaffolds from cultivated Aplysina aerophoba marine demosponge and its biomimetic application. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	19
5	SYNTHESIS AND CHARACTERIZATION OF CHITOSAN/SODIUM ALGINATE BLEND MEMBRANE FOR APPLICATION IN AN ELECTROCHEMICAL CAPACITOR. Progress on Chemistry and Application of Chitin and Its Derivatives, 2020, XXV, 174-191.	0.1	0
6	Synthesis and characterization of modified chitosan membranes for applications in electrochemical capacitor. Electrochimica Acta, 2019, 320, 134632.	5.2	23
7	Dissolution of cellulose in novel carboxylate-based ionic liquids and dimethyl sulfoxide mixed solvents. European Polymer Journal, 2019, 113, 89-97.	5.4	45
8	Modification of chitin structure with tailored ionic liquids. Carbohydrate Polymers, 2018, 202, 397-403.	10.2	25
9	Synthesis and characterization of novel copper oxide-chitosan nanocomposites for non-enzymatic glucose sensing. Sensors and Actuators B: Chemical, 2018, 272, 296-307.	7.8	82
10	Acetate- and lactate-based ionic liquids: Synthesis, characterisation and electrochemical properties. Journal of Molecular Liquids, 2018, 264, 233-241.	4.9	36
11	Electrodes and hydrogel electrolytes based on cellulose: fabrication and characterization as EDLC components. Journal of Solid State Electrochemistry, 2018, 22, 3035-3047.	2.5	62
12	A novel chitosan/sponge chitin origin material as a membrane for supercapacitors – preparation and characterization. RSC Advances, 2016, 6, 4007-4013.	3.6	78
13	Compatibility of poly(bisAEA4)-LiTFSI–MPPipTFSI ionic liquid gel polymer electrolyte with Li 4 Ti 5 O 12 lithium ion battery anode. Journal of Power Sources, 2014, 247, 112-116.	7.8	24
14	Characterization and application of N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide ionic liquid–based gel polymer electrolyte prepared in situ by photopolymerization method in lithium ion batteries. Electrochimica Acta, 2014, 121, 27-33.	5.2	45
15	Nickel (II) lignosulfonate as precursor for the deposition of nickel hydroxide nanoparticles on a glassy carbon electrode for oxidative electrocatalysis. Electrochimica Acta, 2014, 134, 355-362.	5.2	5
16	Nanoparticles of Ni(OH)2 embedded in chitosan membrane as electrocatalyst for non-enzymatic oxidation of glucose. Electrochimica Acta, 2013, 111, 185-191.	5.2	33
17	Preparation, characterization and redox reactivity of glassy carbon electrode modified with organometallic complex of nickel. Electrochimica Acta, 2012, 76, 462-467.	5.2	19
18	Electrochemical characteristics of a new electric double layer capacitor with acidic polymer hydrogel electrolyte. Electrochimica Acta, 2011, 56, 2477-2482.	5.2	35

Izabela Stä™pniak

#	Article	IF	CITATIONS
19	Properties of Li-graphite and LiFePO4 electrodes in LiPF6–sulfolane electrolyte. Electrochimica Acta, 2011, 56, 5972-5978.	5.2	32
20	Oxygen-doped activated carbon fiber cloth as electrode material for electrochemical capacitor. Journal of Power Sources, 2011, 196, 7882-7885.	7.8	116
21	New design of electric double layer capacitors with aqueous LiOH electrolyte as alternative to capacitor with KOH solution. Journal of Power Sources, 2010, 195, 2564-2569.	7.8	19
22	Grafting effect on the wetting and electrochemical performance of carbon cloth electrode and polypropylene separator in electric double layer capacitor. Journal of Power Sources, 2010, 195, 5130-5137.	7.8	45
23	Performance of carbon–carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes. Journal of Power Sources, 2010, 195, 5814-5819.	7.8	335
24	Morpholinium-based ionic liquid mixtures as electrolytes in electrochemical double layer capacitors. Journal of Applied Electrochemistry, 2009, 39, 1949-1953.	2.9	36
25	Highly conductive ionic liquid based ternary polymer electrolytes obtained by in situ photopolymerisation. Electrochimica Acta, 2009, 54, 5660-5665.	5.2	54
26	Electric double layer capacitors with polymer hydrogel electrolyte based on poly(acrylamide) and modified electrode and separator materials. Electrochimica Acta, 2009, 54, 7396-7400.	5.2	14
27	Photoinitiated polymerization in ionic liquids: Kinetics and viscosity effects. Polymer, 2009, 50, 2040-2047.	3.8	51
28	Photopolymerization: new investigations, new materials. Polimery, 2009, 54, 327-333.	0.7	6
29	Ionic liquids as electrolytes. Electrochimica Acta, 2006, 51, 5567-5580.	5.2	2,382
30	Highly conductive solid polymer-(ionic liquid) electrolytes prepared by in situ photopolymerization. Polimery, 2006, 51, 859-861.	0.7	11
31	Heat capacities of ionic liquids and their heats of solution in molecular liquids. Thermochimica Acta, 2005, 433, 149-152.	2.7	156
32	Stability of Ag+ Complexes with Cryptand 222 in Ionic Liquids. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2005, 52, 237-240.	1.6	15
33	Relative molar Gibbs energies of cation transfer from a molecular liquid to ionic liquids at 298.15 K. Physical Chemistry Chemical Physics, 2003, 5, 4215-4218.	2.8	35
34	Copper transport properties in polymer electrolytes based on poly(ethylene oxide) and poly(acrylonitrile). Solid State Ionics, 2001, 143, 425-432.	2.7	16
35	Polyacrylonitrile–sulfolane–CuX2 (X=Cl, Br, CF3SO3) solid polymer electrolyte. Solid State Ionics, 2001, 140, 361-367.	2.7	5
36	Impedance studies on poly(acrylonitrile)–dimethylsulfoxide–AgX (X=Cl, Br, I) gel electrolytes. Solid State Ionics, 2000, 132, 101-106.	2.7	3

#	Article	IF	CITATIONS
37	Polyacrylonitrile–propylene carbonate–CuX2 (X=Cl, Br, CF3SO3) solid polymer electrolyte. Solid Sta Ionics, 2000, 128, 145-150.	te 2.7	9
38	Impedance studies on polyacrylonitrile–CuX2–DMSO (X=Cl, Br, CF3SO3) solid polymer electrolyte. Solid State Ionics, 1999, 120, 135-139.	2.7	6
39	Impedance studies on poly(ethylene oxide)-Cu(CF3SO3)2-sulfolane solid electrolyte. Solid State Ionics, 1998, 111, 99-107.	2.7	9