Sarah A Saslow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6407969/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metallic technetium sequestration in nickel core/shell microstructure during Fe(OH)2 transformation with Ni doping. Journal of Hazardous Materials, 2022, 425, 127779.	12.4	3
2	The behavior of iodine in stabilized granular activated carbon and silver mordenite in cementitious waste forms. Journal of Environmental Radioactivity, 2022, 244-245, 106824.	1.7	2
3	Effect of Temperature on Local Hydration of Zn in Hematite. ACS Earth and Space Chemistry, 2022, 6, 551-557.	2.7	6
4	The evolution of hydrated lime-based cementitious waste forms during leach testing leading to enhanced technetium retention. Journal of Hazardous Materials, 2022, 430, 128507.	12.4	4
5	Review and experimental comparison of the durability of iodine waste forms in semi-dynamic leach testing. Chemical Engineering Journal Advances, 2022, 11, 100300.	5.2	7
6	An exploration of benchtop Xâ€ray emission spectroscopy for precise characterization of the sulfur redox state in cementitious materials. X-Ray Spectrometry, 2022, 51, 151-162.	1.4	2
7	Behavior of iodate substituted ettringite during aqueous leaching. Applied Geochemistry, 2021, 125, 104863.	3.0	6
8	Influences on Subsurface Plutonium and Americium Migration. ACS Earth and Space Chemistry, 2021, 5, 279-294.	2.7	4
9	A Focused Ion Beam-Scanning Transmission Electron Microscopy with Energy-Dispersive X-ray Spectroscopy Study on Technetium Incorporation within Iron Oxides through Fe(OH) ₂ (s) Mineral Transformation. ACS Earth and Space Chemistry, 2021, 5, 525-534.	2.7	5
10	Resolving Configurational Disorder for Impurities in a Low-Entropy Phase. Journal of Physical Chemistry Letters, 2021, 12, 5689-5694.	4.6	6
11	Micrometer-sized magnetite synthesis using Fe(OH)2(s) as a precursor for technetium sequestration from liquid nuclear waste streams. Journal of Nuclear Materials, 2021, 552, 152964.	2.7	2
12	Competitive TcO4–, IO3–, and CrO42– Incorporation into Ettringite. Environmental Science & Technology, 2021, 55, 1057-1066.	10.0	11
13	Vanadium Oxidation States and Structural Role in Aluminoborosilicate Glasses: An Integrated Experimental and Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2021, 125, 12365-12377.	2.6	8
14	lodine immobilization by materials through sorption and redox-driven processes: A literature review. Science of the Total Environment, 2020, 716, 132820.	8.0	59
15	Technetium immobilization by materials through sorption and redox-driven processes: A literature review. Science of the Total Environment, 2020, 716, 132849.	8.0	19
16	Evaluation of materials for iodine and technetium immobilization through sorption and redox-driven processes. Science of the Total Environment, 2020, 716, 136167.	8.0	16
17	Impact of Cr and Co on 99Tc retention in magnetite: A combined study of ab initio molecular dynamics and experiments. Journal of Hazardous Materials, 2020, 387, 121721.	12.4	3
18	Spectroscopic and first-principles investigations of iodine species incorporation into ettringite: Implications for iodine migration in cement waste forms. Journal of Hazardous Materials, 2020, 389, 121880.	12.4	39

SARAH A SASLOW

#	Article	IF	CITATIONS
19	Immobilizing Pertechnetate in Ettringite via Sulfate Substitution. Environmental Science & Technology, 2020, 54, 13610-13618.	10.0	20
20	Hybrid Sorbents for ¹²⁹ I Capture from Contaminated Groundwater. ACS Applied Materials & Interfaces, 2020, 12, 26113-26126.	8.0	19
21	Kinetics of Co-Mingled ⁹⁹ Tc and Cr Removal during Mineral Transformation of Ferrous Hydroxide. ACS Earth and Space Chemistry, 2020, 4, 218-228.	2.7	5
22	Association of Defects and Zinc in Hematite. Environmental Science & Technology, 2019, 53, 13687-13694.	10.0	20
23	Chromate Effect on lodate Incorporation into Calcite. ACS Earth and Space Chemistry, 2019, 3, 1624-1630.	2.7	16
24	Technetium and iodine aqueous species immobilization and transformations in the presence of strong reductants and calcite-forming solutions: Remedial action implications. Science of the Total Environment, 2018, 636, 588-595.	8.0	17
25	Incorporation Modes of lodate in Calcite. Environmental Science & amp; Technology, 2018, 52, 5902-5910.	10.0	31
26	Cr(VI) Effect on Tc-99 Removal from Hanford Low-Activity Waste Simulant by Ferrous Hydroxide. Environmental Science & Technology, 2018, 52, 11752-11759.	10.0	11
27	Characterizing Technetium in Subsurface Sediments for Contaminant Remediation. ACS Earth and Space Chemistry, 2018, 2, 1145-1160.	2.7	8
28	Facile incorporation of technetium into magnetite, magnesioferrite, and hematite by formation of ferrous nitrate <i>in situ</i> : precursors to iron oxide nuclear waste forms. Dalton Transactions, 2018, 47, 10229-10239.	3.3	15
29	Enhanced 99Tc retention in glass waste form using Tc(IV)-incorporated Fe minerals. Journal of Nuclear Materials, 2017, 495, 455-462.	2.7	21
30	Experimental determination of partitioning in the Feâ€Ni system for applications to modeling meteoritic metals. Meteoritics and Planetary Science, 2017, 52, 1133-1145.	1.6	34
31	Aqueous Synthesis of Technetium-Doped Titanium Dioxide by Direct Oxidation of Titanium Powder, a Precursor for Ceramic Nuclear Waste Forms. Chemistry of Materials, 2017, 29, 10369-10376.	6.7	12
32	Reduction and Simultaneous Removal of ⁹⁹ Tc and Cr by Fe(OH) ₂ (s) Mineral Transformation. Environmental Science & Technology, 2017, 51, 8635-8642.	10.0	68
33	Phase-referenced nonlinear spectroscopy of the α-quartz/water interface. Nature Communications, 2016, 7, 13587.	12.8	130
34	A General Chemistry Assignment Analyzing Environmental Contamination for the DePue, IL, National Superfund Site. Journal of Chemical Education, 2015, 92, 638-642.	2.3	4
35	Precipitates of Al(III), Sc(III), and La(III) at the Muscovite–Water Interface. Journal of Physical Chemistry A, 2014, 118, 10974-10981.	2.5	11
36	Zinc Ion–Hydroxyl Interactions at Undecanol-Functionalized Fused Silica/Water Interfaces Using the Eisenthal χ ⁽³⁾ Technique. Journal of Physical Chemistry C, 2012, 116, 7016-7020.	3.1	15

SARAH A SASLOW

#	Article	IF	CITATIONS
37	Uranyl Adsorption at the Muscovite (Mica)/Water Interface Studied by Second Harmonic Generation. Environmental Science & Technology, 2012, 46, 11154-11161.	10.0	25
38	U(VI) Adsorption and Speciation at the Acidic Silica/Water Interface Studied by Resonant and Nonresonant Second Harmonic Generation. Journal of Physical Chemistry C, 2011, 115, 13353-13360.	3.1	24
39	Exponential Sensitivity and Speciation of Al(III), Sc(III), Y(III), La(III), and Gd(III) at Fused Silica/Water Interfaces. Journal of Physical Chemistry A, 2011, 115, 14438-14445.	2.5	19
40	Partitioning behavior at 9GPa in the Fe–S system and implications for planetary evolution. Earth and Planetary Science Letters, 2011, 305, 425-434.	4.4	16
41	The deep water abundance on Jupiter: New constraints from thermochemical kinetics and diffusion modeling. Icarus, 2010, 209, 602-615.	2.5	78
42	The iron–nickel–phosphorus system: Effects on the distribution of trace elements during the evolution of iron meteorites. Geochimica Et Cosmochimica Acta, 2009, 73, 2674-2691.	3.9	35
43	An investigation of the behavior of Cu and Cr during iron meteorite crystallization. Meteoritics and Planetary Science, 2009, 44, 505-519.	1.6	34
44	The Fe–C system at 5GPa and implications for Earth's core. Geochimica Et Cosmochimica Acta, 2008, 72, 4146-4158.	3.9	48
45	The effect of Ni on element partitioning during iron meteorite crystallization. Meteoritics and Planetary Science, 2007, 42, 1735-1750.	1.6	26