
Vladimir Ossipov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6407359/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The regulating effect of light on the content of flavan-3-ols and derivatives of hydroxybenzoic acids in the callus culture of the tea plant, Camellia sinensis L. Biochemical Systematics and Ecology, 2022, 101, 104383.	1.3	7
2	Metabolite Composition of Paper Birch Buds after Eleven Growing Seasons of Exposure to Elevated CO2 and O3. Forests, 2020, 11, 330.	2.1	3
3	UPLC-PDA-Q Exactive Orbitrap-MS profiling of the lipophilic compounds product isolated from Eucalyptus viminalis plants. Heliyon, 2020, 6, e05768.	3.2	7
4	Differences in the relationship between metabolomic and ionomic traits of Quercus variabilis growing at contrasting geologic-phosphorus sites in subtropics. Plant and Soil, 2019, 439, 339-355.	3.7	8
5	Comparative stability of dimeric and monomeric pigments extracted from sea urchin Strongylocentrotus droebachiensis. Natural Product Research, 2017, 31, 1747-1751.	1.8	6
6	Effects of three years' increase in density of the geometrid Epirrita autumnata on the change in metabolome of mountain birch trees (Betula pubescens ssp. czerepanovii). Chemoecology, 2014, 24, 201-214.	1.1	8
7	Biochemical and growth acclimation of birch to night temperatures: genotypic similarities and differences. Plant Biology, 2013, 15, 36-43.	3.8	11
8	Ellagitannins: defences of <i>Betula nana</i> against <i>Epirrita autumnata</i> folivory?. Agricultural and Forest Entomology, 2013, 15, 187-196.	1.3	6
9	Needle metabolome, freezing tolerance and gas exchange in Norway spruce seedlings exposed to elevated temperature and ozone concentration. Tree Physiology, 2012, 32, 1102-1112.	3.1	41
10	Flavonoid Metabolites in the Hemolymph of European Pine Sawfly (Neodiprion sertifer) Larvae. Journal of Chemical Ecology, 2012, 38, 538-546.	1.8	5
11	Do warmer growing seasons ameliorate the recovery of mountain birches after winter moth outbreak?. Trees - Structure and Function, 2012, 26, 809-819.	1.9	7
12	Quantifying variation and chemical correlates of bladderwrack quality - herbivore population makes a difference. Functional Ecology, 2011, 25, 900-909.	3.6	6
13	The offline combination of thin-layer chromatography and high-performance liquid chromatography with diode array detection and micrOTOF-Q mass spectrometry for the separation and identification of spinochromes from sea urchin (Strongylocentrotus droebachiensis) shells. Journal of Chromatography A. 2011, 1218, 9111-9114.	3.7	29
14	Application of metabolomics to genotype and phenotype discrimination of birch trees grown in a long-term open-field experiment. Metabolomics, 2008, 4, 39-51.	3.0	47
15	Foliar oxidases as mediators of the rapidly induced resistance of mountain birch against Epirrita autumnata. Oecologia, 2008, 154, 725-730.	2.0	31
16	Systemic induced resistance: a riskâ€spreading strategy in clonal plant networks?. New Phytologist, 2008, 179, 1142-1153.	7.3	48
17	Phenolics from the culms of five bamboo species in the Tangjiahe and Wolong Giant Panda Reserves, Sichuan, China. Biochemical Systematics and Ecology, 2008, 36, 758-765.	1.3	21
18	Reversed-phase HPLC-ESI/MS analysis of birch leaf proanthocyanidins after their acidic degradation in the presence of nucleophiles. Phytochemical Analysis, 2007, 18, 378-386.	2.4	46

VLADIMIR OSSIPOV

#	Article	IF	CITATIONS
19	Shift in birch leaf metabolome and carbon allocation during long-term open-field ozone exposure. Global Change Biology, 2007, 13, 1053-1067.	9.5	64
20	Foliar Phenolics are Differently Associated with Epirrita autumnata Growth and Immunocompetence. Journal of Chemical Ecology, 2007, 33, 1013-1023.	1.8	64
21	Shift in birch leaf metabolome and carbon allocation during long-term open-field ozone exposure. Global Change Biology, 2007, .	9.5	1
22	Quantitative analysis of polymeric proanthocyanidins in birch leaves with normal-phase HPLC. Phytochemical Analysis, 2006, 17, 149-156.	2.4	40
23	Additive genetic variation of secondary and primary metabolites in mountain birch. Oikos, 2006, 112, 382-391.	2.7	10
24	Effect of cold hardening on the phenolic complex of winter wheat leaves. Russian Journal of Plant Physiology, 2006, 53, 495-500.	1.1	32
25	Effects of Elevated Carbon Dioxide and Ozone on Foliar Proanthocyanidins in Betula platyphylla, Betula ermanii, and Fagus crenata Seedlings. Journal of Chemical Ecology, 2006, 32, 1445-1458.	1.8	17
26	A short-lived herbivore on a long-lived host: tree resistance to herbivory depends on leaf age. Oikos, 2005, 108, 99-104.	2.7	32
27	Effects of simulated winter browsing on mountain birch foliar chemistry and on the performance of insect herbivores. Oikos, 2005, 111, 221-234.	2.7	22
28	Biochemical transformation of birch leaf phenolics in larvae of six species of sawflies. Chemoecology, 2005, 15, 153-159.	1.1	12
29	Delayed induced responses of birch glandular trichomes and leaf surface lipophilic compounds to mechanical defoliation and simulated winter browsing. Oecologia, 2005, 146, 385-393.	2.0	33
30	Variable responses of folivorous sawflies to leaf quality of mountain birch. Canadian Journal of Forest Research, 2005, 35, 189-198.	1.7	7
31	Rapid Herbivore-Induced Changes in Mountain Birch Phenolics and Nutritive Compounds and Their Effects on Performance of the Major Defoliator, Epirrita autumnata. Journal of Chemical Ecology, 2004, 30, 303-321.	1.8	32
32	Defensive Effect of Surface Flavonoid Aglycones of Betula pubescens Leaves Against First Instar Epirrita autumnata Larvae. Journal of Chemical Ecology, 2004, 30, 2257-2268.	1.8	38
33	Ranking of individual mountain birch trees in terms of leaf chemistry: seasonal and annual variation. Chemoecology, 2004, 14, 31-43.	1.1	47
34	Analysis of procyanidins in pine bark with reversed-phase and normal-phase high-performance liquid chromatography–electrospray ionization mass spectrometry. Analytica Chimica Acta, 2004, 522, 105-112.	5.4	118
35	Amino acids during development of mountain birch leaves. Chemoecology, 2003, 13, 95-101.	1.1	16
36	Gallic acid and hydrolysable tannins are formed in birch leaves from an intermediate compound of the shikimate pathway. Biochemical Systematics and Ecology, 2003, 31, 3-16.	1.3	116

VLADIMIR OSSIPOV

#	Article	IF	CITATIONS
37	Effects of host shading on consumption and growth of the geometrid Epirrita autumnata : interactive roles of water, primary and secondary compounds. Oikos, 2003, 103, 3-16.	2.7	79
38	Distribution Of Hydrolysable Tannins In The Foliage Of Finnish Birch Species. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2002, 57, 248-256.	1.4	31
39	Seasonal changes in birch leaf chemistry: are there trade-offs between leaf growth and accumulation of phenolics?. Oecologia, 2002, 130, 380-390.	2.0	232
40	Interactive effects of leaf maturation and phenolics on consumption and growth of a geometrid moth. Entomologia Experimentalis Et Applicata, 2002, 104, 125-136.	1.4	77
41	Title is missing!. Journal of Insect Behavior, 2002, 15, 649-657.	0.7	7
42	Interactive effects of leaf maturation and phenolics on consumption and growth of a geometrid moth. , 2002, , 125-136.		3
43	Patterns in content of phenolic compounds in leaves of mountain birches along a strong pollution gradient. Chemosphere, 2001, 45, 291-301.	8.2	44
44	Delayed greening of mountain birch leaves:Ecological and chemical correlates. Ecoscience, 2001, 8, 68-75.	1.4	2
45	Seasonal variation in the content of hydrolysable tannins in leaves of Betula pubescens. Phytochemistry, 2001, 57, 15-22.	2.9	140
46	Proanthocyanidins of mountain birch leaves: quantification and properties. Phytochemical Analysis, 2001, 12, 128-133.	2.4	80
47	Phenolic and phenolic-related factors as determinants of suitability of mountain birch leaves to an herbivorous insect. Biochemical Systematics and Ecology, 2001, 29, 223-240.	1.3	100
48	Broad-specificity quinate (shikimate) dehydrogenasefrom Pinus taeda needles. Plant Physiology and Biochemistry, 2000, 38, 923-928.	5.8	19
49	Covariation of fluctuating asymmetry, herbivory and chemistry during birch leaf expansion. Oecologia, 2000, 122, 354-360.	2.0	69
50	Effects of Resource Availability on Carbon Allocation and Developmental Instability in Cloned Birch Seedlings. International Journal of Plant Sciences, 2000, 161, 119-125.	1.3	25
51	Characterisation of hydrolysable tannins from leaves of Betula pubescens by high-performance liquid chromatography–mass spectrometry. Journal of Chromatography A, 1999, 864, 283-291.	3.7	148
52	Multiplicity of biochemical factors determining quality of growing birch leaves. Oecologia, 1999, 120, 102-112.	2.0	114
53	Delayed induced changes in the biochemical composition of host plant leaves during an insect outbreak. Oecologia, 1998, 116, 182-190.	2.0	101
54	Biosynthetic origin of carbon-based secondary compounds: cause of variable responses of woody plants to fertilization?. Chemoecology, 1998, 8, 133-139.	1.1	155

VLADIMIR OSSIPOV

#	Article	IF	CITATIONS
55	A long-term study of the effects of simulated acid rain on birch leaf phenolics. Chemosphere, 1998, 36, 639-644.	8.2	3
56	Concentrations and among-compound correlations of individual phenolics in white birch leaves under air pollution stress. Chemosphere, 1998, 37, 1445-1456.	8.2	33
57	Low molecular mass phenolics in foliage of Betula pubescens Ehrh. in relation to aerial pollution. Chemosphere, 1997, 34, 687-697.	8.2	15
58	Gallotannins of birch betula pubescens leaves: HLPC separation and quantification. Biochemical Systematics and Ecology, 1997, 25, 493-504.	1.3	58
59	The effect of simulated acid rain on the biochemical composition of Scots pine (Pinus sylvestris L.) needles. Environmental Pollution, 1996, 92, 315-321.	7.5	12
60	Variation of total phenolic content and individual low-molecular-weight phenolics in foliage of mountain birch trees (Betula pubescens ssp.tortuosa). Journal of Chemical Ecology, 1996, 22, 2023-2040.	1.8	125
61	High-performance liquid chromatographic separation and identification of phenolic compounds from leaves of Betula pubescens and Betula pendula. Journal of Chromatography A, 1996, 721, 59-68.	3.7	75
62	HPLC isolation and identification of flavonoids from white birch Betula pubescens leaves. Biochemical Systematics and Ecology, 1995, 23, 213-222.	1.3	58
63	Quinate:NAP(P)+-oxidoreductase from Larix sibirica: purification, characterization and function. Trees - Structure and Function, 1995, 10, 46.	1.9	11
64	Variation among and within mountain birch trees in foliage phenols, carbohydrates, and amino acids, and in growth ofEpirrita autumnata larvae. Journal of Chemical Ecology, 1995, 21, 1421-1446.	1.8	59