Michael L Falk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6407069/publications.pdf

Version: 2024-02-01

104 papers 6,803 citations

94433 37 h-index 82 g-index

106 all docs

 $\begin{array}{c} 106 \\ \\ \text{docs citations} \end{array}$

106 times ranked 4143 citing authors

#	Article	IF	CITATIONS
1	Predicting plastic events and quantifying the local yield surface in 3D model glasses. Journal of the Mechanics and Physics of Solids, 2022, 158, 104671.	4.8	10
2	Strengthening magnesium by design: Integrating alloying and dynamic processing. Mechanics of Materials, 2022, 167, 104203.	3.2	11
3	Strategic control of atomic-scale defects for tuning properties in metals. Nature Reviews Physics, 2021, 3, 148-149.	26.6	8
4	Atomic nonaffinity as a predictor of plasticity in amorphous solids. Physical Review Materials, 2021, 5,	2.4	13
5	Manifold learning for coarse-graining atomistic simulations: Application to amorphous solids. Acta Materialia, 2021, 215, 117008.	7.9	9
6	Recrystallization mechanisms, grain refinement, and texture evolution during ECAE processing of Mg and its alloys. Mechanics of Materials, 2021, 162, 104067.	3.2	10
7	Predicting the Rate of Homogeneous Intermetallic Nucleation within Steep Composition Gradients. Journal of Physical Chemistry C, 2020, 124, 23807-23814.	3.1	3
8	Undergraduate Engineering Students' Types and Quality of Knowledge Used in Synthetic Modeling. Cognition and Instruction, 2020, 38, 503-537.	2.9	7
9	Deformation assisted nucleation of continuous nanoprecipitates in Mg–Al alloys. Materialia, 2020, 9, 100583.	2.7	17
10	Predicting plasticity in disordered solids from structural indicators. Physical Review Materials, 2020, 4, .	2.4	112
11	Student Explanations in the Context of Computational Science and Engineering Education. Cognition and Instruction, 2019, 37, 201-231.	2.9	24
12	Critical Analysis of an FeP Empirical Potential Employed to Study the Fracture of Metallic Glasses. Physical Review Letters, 2019, 122, 035501.	7.8	19
13	Characterizing the interplay of cognitive and metacognitive knowledge in computational modeling and simulation practices. Journal of Engineering Education, 2019, 108, 276-303.	3.0	18
14	Dynamic precipitation and recrystallization in Mg-9wt.%Al during equal-channel angular extrusion: A comparative study to conventional aging. Acta Materialia, 2019, 172, 185-199.	7.9	99
15	Thermally activated twin thickening and solute softening in magnesium alloys - a molecular simulation study. Scripta Materialia, 2019, 162, 195-199.	5. 2	10
16	Promoting sulfur adsorption using surface Cu sites in metal–organic frameworks for lithium sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 4811-4821.	10.3	85
17	Local yield stress statistics in model amorphous solids. Physical Review E, 2018, 97, 033001.	2.1	67
18	Predicting Shear Transformation Events in Metallic Glasses. Physical Review Letters, 2018, 120, 125503.	7.8	52

#	Article	IF	Citations
19	Shear band broadening in simulated glasses. Physical Review E, 2018, 98, .	2.1	20
20	Intermetallic formation at deeply supercooled Ni/Al multilayer interfaces: A molecular dynamics study. Journal of Applied Physics, 2018, 124 , .	2.5	11
21	Suppression of homogeneous crystal nucleation of the NiAl intermetallic by a composition gradient: A molecular dynamics study. Journal of Chemical Physics, 2017, 146, .	3.0	10
22	Affordances and challenges of computational tools for supporting modeling and simulation practices. Computer Applications in Engineering Education, 2017, 25, 352-375.	3.4	20
23	Tribochemical Wear of Diamond-Like Carbon-Coated Atomic Force Microscope Tips. ACS Applied Materials & Samp; Interfaces, 2017, 9, 35341-35348.	8.0	39
24	Solute softening and defect generation during prismatic slip in magnesium alloys. Modelling and Simulation in Materials Science and Engineering, 2017, 25, 085001.	2.0	14
25	Writing In-Code Comments to Self-Explain in Computational Science and Engineering Education. ACM Transactions on Computing Education, 2017, 17, 1-21.	3.5	31
26	Multibond Model of Single-Asperity Tribochemical Wear at the Nanoscale. ACS Applied Materials & Interfaces, 2017, 9, 35333-35340.	8.0	33
27	Strain-dependent activation energy of shear transformation in metallic glasses. Physical Review B, 2017, 95, .	3.2	18
28	Coarse graining atomistic simulations of plastically deforming amorphous solids. Physical Review E, 2017, 95, 053001.	2.1	38
29	A small-gap effective-temperature model of transient shear band formation during flow. Journal of Rheology, 2016, 60, 873-882.	2.6	12
30	Multiphysics Simulations of Lithiation-Induced Stress in Li _{$1+\langle i\rangle \times \langle i\rangle < sub\rangle Ti2 < sub\rangle O < sub>4 < sub\rangle Electrode Particles. Journal of Physical Chemistry C, 2016, 120, 27871-27881.$}	3.1	8
31	Connecting Local Yield Stresses with Plastic Activity in Amorphous Solids. Physical Review Letters, 2016, 117, 045501.	7.8	137
32	A case study of undergraduate engineering students' computational literacy and self-beliefs about computing in the context of authentic practices. Computers in Human Behavior, 2016, 61, 427-442.	8.5	36
33	Deformation of metallic glasses: Recent developments in theory, simulations, and experiments. Acta Materialia, 2016, 109, 375-393.	7.9	400
34	Amorphous ZnO-Based Compounds as Thermoelectrics. Journal of Physical Chemistry C, 2016, 120, 2529-2535.	3.1	19
35	Atomistic simulation of solid solution hardening in Mg/Al alloys: Examination of composition scaling and thermo-mechanical relationships. Acta Materialia, 2016, 105 , $378-389$.	7.9	24
36	ZT > 0.1 Electronâ€Carrying Polymer Thermoelectric Composites with In Situ SnCl ₂ Microstructure Growth. Advanced Science, 2015, 2, 1500015.	11.2	22

#	Article	IF	CITATIONS
37	Spatial nonuniformity in heat transport across hybrid material interfaces. Physical Review B, 2014, 90,	3.2	12
38	A practical perspective on the implementation of hyperdynamics for accelerated simulation. Journal of Chemical Physics, 2014, 140, 044107.	3.0	6
39	Soft spots and their structural signature in a metallic glass. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14052-14056.	7.1	348
40	Interdiffusion of Ni-Al multilayers: A continuum and molecular dynamics study. Journal of Applied Physics, 2013, 114, .	2.5	44
41	Ion Dependence of Gate Dielectric Behavior of Alkali Metal Ion-Incorporated Aluminas in Oxide Field-Effect Transistors. Chemistry of Materials, 2013, 25, 3788-3796.	6.7	58
42	Cavitation in Amorphous Solids. Physical Review Letters, 2013, 110, 185502.	7.8	75
43	Introducing Discipline-Based Computing in Undergraduate Engineering Education. ACM Transactions on Computing Education, 2013, 13, 1-22.	3.5	37
44	Length-scale dependence of elastic strain from scattering measurements in metallic glasses. Physical Review B, 2012, 85, hermodynamic and kinetic properties of Licenshimath	3.2	31
45	xmlns:mml="http://www.w3.org/1998/Math/Math/Mc" display="inline"> <mml:msub><mml:mrow =""><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub> < xmlns:mml="http://www.w3.org/1998/Math/Math/Mt" display="inline"> <mml:mi>x</mml:mi> x< xmlns:mml="http://www.w3.org/1998/Math/Math/Mt" display="inline"> <mml:msub><mml:msub><mml:mrow =""><mml:mn>3</mml:mn></mml:mrow></mml:msub>O<mml:mt th="" ="" <=""><th>/mml:mat 3.2</th><th>h>V<mml:m 16</mml:m </th></mml:mt></mml:msub>	/mml:mat 3.2	h>V <mml:m 16</mml:m
46	Deformation and Failure of Amorphous, Solidlike Materials. Annual Review of Condensed Matter Physics, 2011, 2, 353-373.	14.5	296
47	Role of intermediate states in low-velocity friction between amorphous surfaces. Physical Review B, 2011, 84, .	3.2	20
48	Bayesian Inference of Atomic Diffusivity in a Binary Ni/Al System Based on Molecular Dynamics. Multiscale Modeling and Simulation, 2011, 9, 486-512.	1.6	29
49	Simulating the mechanical response of amorphous solids using atomistic methods. European Physical Journal B, 2010, 75, 405-413.	1.5	46
50	Shear localization and the plasticity of bulk amorphous alloys. Scripta Materialia, 2010, 63, 231-234.	5.2	33
51	An energy basin finding algorithm for kinetic Monte Carlo acceleration. Journal of Chemical Physics, 2010, 132, 134104.	3.0	83
52	Paradoxical phenomena between the homogeneous and inhomogeneous deformations of metallic glasses. Applied Physics Letters, 2009, 94, 021907.	3.3	18
53	Atomic-scale simulations on the sliding of incommensurate surfaces: The breakdown of superlubricity. Physical Review B, 2009, 80, .	3.2	43
54	Nanostructures generated by explosively driven friction: Experiments and molecular dynamics simulations. Acta Materialia, 2009, 57, 5270-5282.	7.9	42

#	Article	IF	CITATIONS
55	A computational analysis of the deformation mechanisms of a nanocrystal–metallic glass composite. Acta Materialia, 2008, 56, 995-1000.	7.9	55
56	Elastostatically induced structural disordering in amorphous alloys. Acta Materialia, 2008, 56, 5440-5450.	7.9	191
57	Modeling low energy sputtering of hexagonal boron nitride by xenon ions. Journal of Applied Physics, 2008, 104, .	2.5	16
58	Accelerated Molecular Dynamics Simulation of AFM Experiments Using the Bond-Boost Method. Materials Research Society Symposia Proceedings, 2008, 1085, 20201.	0.1	2
59	Elastic effects on relaxation volume tensor calculations. Physical Review B, 2008, 77, .	3.2	16
60	Structural disordering process of an amorphous alloy driven by the elastostatic compression at room temperature. Applied Physics Letters, 2008, 92, .	3.3	55
61	The Flow of Glass. Science, 2007, 318, 1880-1881.	12.6	29
62	Evaluation of the Disorder Temperature and Free-Volume Formalisms via Simulations of Shear Banding in Amorphous Solids. Physical Review Letters, 2007, 98, 185505.	7.8	160
63	Simulations of nanoindentation in a thin amorphous metal film. Thin Solid Films, 2007, 515, 3179-3182.	1.8	20
64	Stress-induced structural transformation and shear banding during simulated nanoindentation of a metallic glass. Acta Materialia, 2007, 55, 4317-4324.	7.9	140
65	MD Simulations of Microstructure Evolution during High-Velocity Sliding between Crystalline Materials. Tribology Letters, 2007, 28, 299-306.	2.6	40
66	Atomic-scale simulations of strain localization in three-dimensional model amorphous solids. Physical Review B, 2006, 73, .	3.2	154
67	Medium range order and the radial distribution function. Journal of Non-Crystalline Solids, 2006, 352, 116-122.	3.1	13
68	The continuum elastic and atomistic viewpoints on the formation volume and strain energy of a point defect. Journal of the Mechanics and Physics of Solids, 2006, 54, 1929-1951.	4.8	25
69	Multiscale diffusion Monte Carlo simulation of epitaxial growth. Journal of Computational Physics, 2006, 217, 519-529.	3.8	17
70	Does metallic glass have a backbone? The role of percolating short range order in strength and failure. Scripta Materialia, 2006, 54, 381-386.	5.2	79
71	Tribological characteristics of diamond-like carbon (DLC) based nanocomposite coatings. Wear, 2005, 259, 744-751.	3.1	22
72	Structural transformation and localization during simulated nanoindentation of a noncrystalline metal film. Applied Physics Letters, 2005, 86, 011914.	3.3	77

#	Article	IF	CITATIONS
73	Shear softening and structure in a simulated three-dimensional binary glass. Journal of Chemical Physics, 2005, 122, 154508.	3.0	50
74	Strain Localization and Percolation of Stable Structure in Amorphous Solids. Physical Review Letters, 2005, 95, 095502.	7.8	258
75	Atomic-scale simulations of strain localization in a single-component three-dimensional model amorphous solid. Materials Research Society Symposia Proceedings, 2005, 903, 1.	0.1	1
76	Thermal effects in the shear-transformation-zone theory of amorphous plasticity: Comparisons to metallic glass data. Physical Review E, 2004, 70, 011507.	2.1	104
77	Pit nucleation in the presence of three-dimensional islands during heteroepitaxial growth. Physical Review B, 2004, 70, .	3.2	11
78	AtomLab: A tool for teaching materials science and simulation on the atomic scale. Materials Research Society Symposia Proceedings, 2004, 827, 261.	0.1	0
79	Tribological behavior of WC/DLC/WS2 nanocomposite coatings. Surface and Coatings Technology, 2004, 188-189, 605-611.	4.8	48
80	Relating metallic glass mechanical properties to liquid structure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 671-674.	5.6	23
81	Examples of structural evolution during sliding and shear of ductile materials. Scripta Materialia, 2003, 49, 977-983.	5.2	85
82	The effect of island density on pit nucleation in In0.27Ga0.73As/GaAs films. Surface Science, 2003, 525, 222-228.	1.9	11
83	Sliding and deformation of metallic glass: experiments and MD simulations. Journal of Non-Crystalline Solids, 2003, 317, 206-214.	3.1	47
84	The Thermal Shear-Transformation-Zone Theory: Homogeneous Flow and Superplasticity in Bulk Metallic Glasses. Materials Research Society Symposia Proceedings, 2003, 806, 262.	0.1	0
85	Pit nucleation in compound semiconductor thin films. Materials Research Society Symposia Proceedings, 2003, 794, 82.	0.1	0
86	Strain Localization in a Molecular-Dynamics Model of a Metallic Glass. Materials Research Society Symposia Proceedings, 2002, 754, 1 .	0.1	2
87	Sliding behavior of metallic glass. Wear, 2001, 250, 420-430.	3.1	87
88	Sliding behavior of metallic glass. Wear, 2001, 250, 409-419.	3.1	88
89	Experimental Studies and Molecular Dynamics Simulations of the Sliding Contact of Metallic Glass. Materials Research Society Symposia Proceedings, 2000, 644, 181.	0.1	1
90	From Simulation to Theory in the Physics of Deformation and Fracture. MRS Bulletin, 2000, 25, 40-45.	3.5	58

#	Article	IF	CITATIONS
91	Molecular-dynamics study of ductile and brittle fracture in model noncrystalline solids. Physical Review B, 1999, 60, 7062-7070.	3.2	172
92	Dynamics of viscoplastic deformation in amorphous solids. Physical Review E, 1998, 57, 7192-7205.	2.1	1,749
93	Interactions between charged spherical macroions. Journal of Chemical Physics, 1996, 104, 5209-5219.	3.0	125
94	Electronic structure of the triangular quantum well in a tilted magnetic field. Physica B: Condensed Matter, 1993, 184, 318-322.	2.7	12
95	Symmetry-dependent localization in a finite superlattice. Physical Review B, 1992, 46, 9564-9568.	3.2	8
96	Quantum wire in a longitudinal magnetic field: Effect of quantum confinement on magnetization. Physical Review B, 1992, 46, 15270-15273.	3.2	7
97	Oscillating magnetization of quantum wells and wires in tilted magnetic fields. Physical Review B, 1992, 46, 15530-15533.	3.2	15
98	Interface localized states in coupled superlattices. Journal of Applied Physics, 1992, 72, 5325-5328.	2.5	12
99	Investigation of localization in an infinite superlattice. Superlattices and Microstructures, 1992, 12, 159-161.	3.1	4
100	Materials Science Students' Perceptions and Usage Intentions of Computation. , 0, , .		2
101	Deformation Assisted Nucleation of Continuous Nanoprecipitates in Mg-Al Alloys. SSRN Electronic Journal, 0, , .	0.4	3
102	Teaching The Molecular Simulation Of Materials To A Diverse Cross Section Of Engineering Graduate Students., 0,,.		0
103	Student Driven Engineering Design Projects. , 0, , .		0
104	TITLE: Rethinking the Gateway Computing Curriculum Across Engineering Disciplines., 0,,.		0