Justin N Wood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6406871/publications.pdf

Version: 2024-02-01

394421 315739 1,505 41 19 38 citations h-index g-index papers 41 41 41 834 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Acquisition of English Number Marking: The Singular-Plural Distinction. Language Learning and Development, 2006, 2, 1-25.	1.4	172
2	Infants' enumeration of actions: numerical discrimination and its signature limits. Developmental Science, 2005, 8, 173-181.	2.4	170
3	On the relation between the acquisition of singular–plural morphoâ€syntax and the conceptual distinction between one and more than one. Developmental Science, 2007, 10, 365-373.	2.4	138
4	The Perception of Rational, Goal-Directed Action in Nonhuman Primates. Science, 2007, 317, 1402-1405.	12.6	110
5	Evidence for a non-linguistic distinction between singular and plural sets in rhesus monkeys. Cognition, 2008, 107, 603-622.	2.2	85
6	Chronometric studies of numerical cognition in five-month-old infants. Cognition, 2005, 97, 23-39.	2.2	81
7	Visual working memory for observed actions Journal of Experimental Psychology: General, 2007, 136, 639-652.	2.1	66
8	Free-ranging rhesus monkeys spontaneously individuate and enumerate small numbers of non-solid portions. Cognition, 2008, 106, 207-221.	2.2	62
9	Rhesus monkeys correctly read the goal-relevant gestures of a human agent. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1913-1918.	2.6	58
10	Newborn chickens generate invariant object representations at the onset of visual object experience. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14000-14005.	7.1	46
11	Acquisition of singular-plural morphology Developmental Psychology, 2009, 45, 202-206.	1.6	39
12	A core knowledge architecture of visual working memory Journal of Experimental Psychology: Human Perception and Performance, 2011, 37, 357-381.	0.9	39
13	Action comprehension in non-human primates: motor simulation or inferential reasoning?. Trends in Cognitive Sciences, 2008, 12, 461-465.	7.8	31
14	Visual memory for agents and their actions. Cognition, 2008, 108, 522-532.	2.2	30
15	From movements to actions: Two mechanisms for learning action sequences. Cognitive Psychology, 2011, 63, 141-171.	2.2	30
16	When do spatial and visual working memory interact?. Attention, Perception, and Psychophysics, 2011, 73, 420-439.	1.3	28
17	The uniquely human capacity to throw evolved from a non-throwing primate: an evolutionary dissociation between action and perception. Biology Letters, 2007, 3, 360-365.	2.3	26
18	Evolving the Capacity to Understand Actions, Intentions, and Goals. Annual Review of Psychology, 2010, 61, 303-324.	17.7	24

#	Article	IF	CITATIONS
19	Visual Long-Term Memory Stores High-Fidelity Representations of Observed Actions. Psychological Science, 2013, 24, 403-411.	3.3	22
20	Characterizing the information content of a newly hatched chick's first visual object representation. Developmental Science, 2015, 18, 194-205.	2.4	21
21	Distinct Visual Working Memory Systems for View-Dependent and View-Invariant Representation. PLoS ONE, 2009, 4, e6601.	2.5	20
22	Newly Hatched Chicks Solve the Visual Binding Problem. Psychological Science, 2014, 25, 1475-1481.	3.3	20
23	Distinct neural substrates for visual shortâ€term memory of actions. Human Brain Mapping, 2018, 39, 4119-4133.	3.6	19
24	A chicken model for studying the emergence of invariant object recognition. Frontiers in Neural Circuits, 2015, 9, 7.	2.8	18
25	A smoothness constraint on the development of object recognition. Cognition, 2016, 153, 140-145.	2.2	18
26	The development of newborn object recognition in fast and slow visual worlds. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160166.	2.6	16
27	The Development of Invariant Object Recognition Requires Visual Experience With Temporally Smooth Objects. Cognitive Science, 2018, 42, 1391-1406.	1.7	15
28	Visual working memory retains movement information within an allocentric reference frame. Visual Cognition, 2010, 18, 1464-1485.	1.6	14
29	Rhesus monkeys' understanding of actions and goals. Social Neuroscience, 2008, 3, 60-68.	1.3	12
30	Enhanced learning of natural visual sequences in newborn chicks. Animal Cognition, 2016, 19, 835-845.	1.8	12
31	Using automation to combat the replication crisis: A case study from controlled-rearing studies of newborn chicks., 2019, 57, 101329.		12
32	An automated controlled-rearing method for studying the origins of movement recognition in newly hatched chicks. Animal Cognition, 2015, 18, 723-731.	1.8	9
33	Binding actions and scenes in visual long-term memory. Psychonomic Bulletin and Review, 2013, 20, 1246-1252.	2.8	8
34	Face recognition in newly hatched chicks at the onset of vision Journal of Experimental Psychology Animal Learning and Cognition, 2015, 41, 206-215.	0.5	7
35	Measuring the speed of newborn object recognition in controlled visual worlds. Developmental Science, 2017, 20, e12470.	2.4	7
36	Spontaneous Preference for Slowly Moving Objects in Visually NaÃ-ve Animals. Open Mind, 2017, 1, 111-122.	1.7	7

Justin N Wood

#	Article	IF	CITATIONS
37	Using automated controlled rearing to explore the origins of object permanence. Developmental Science, 2019, 22, e12796.	2.4	6
38	One-shot learning of view-invariant object representations in newborn chicks. Cognition, 2020, 199, 104192.	2.2	5
39	Automated Study Challenges the Existence of a Foundational Statistical-Learning Ability in Newborn Chicks. Psychological Science, 2019, 30, 1592-1602.	3.3	2
40	Distorting Face Representations in Newborn Brains. Cognitive Science, 2021, 45, e13021.	1.7	0
41	How Visual Experience Shapes Object Recognition in the Newborn Brain: A Controlled Rearing Approach. Journal of Vision, 2017, 17, 1106.	0.3	0