Seiji Yamazoe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6406770/publications.pdf

Version: 2024-02-01

157	5,486	38 h-index	66
papers	citations		g-index
168	168	168	5148
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis of active, robust and cationic Au ₂₅ cluster catalysts on double metal hydroxide by long-term oxidative aging of Au ₂₅ (SR) ₁₈ . Nanoscale, 2022, 14, 3031-3039.	5.6	10
2	Phosphorus-Alloying as a Powerful Method for Designing Highly Active and Durable Metal Nanoparticle Catalysts for the Deoxygenation of Sulfoxides: Ligand and Ensemble Effects of Phosphorus. Jacs Au, 2022, 2, 419-427.	7.9	12
3	Structure–Stability Relationship of Amorphous IrO ₂ –Ta ₂ O ₅ Electrocatalysts on Ti Felt for Oxygen Evolution in Sulfuric Acid. Journal of Physical Chemistry C, 2022, 126, 1817-1827.	3.1	7
4	Elucidation of catalytic NO _{<i>x</i>} reduction mechanism in an electric field at low temperatures. Catalysis Science and Technology, 2022, 12, 4450-4455.	4.1	5
5	Inter-element miscibility driven stabilization of ordered pseudo-binary alloy. Nature Communications, 2022, 13, 1047.	12.8	6
6	Variable control of the electronic states of a silver nanocluster <i>via</i> protonation/deprotonation of polyoxometalate ligands. Chemical Science, 2022, 13, 5557-5561.	7.4	19
7	Direct Air Capture of CO ₂ Using a Liquid Amine–Solid Carbamic Acid Phase-Separation System Using Diamines Bearing an Aminocyclohexyl Group. ACS Environmental Au, 2022, 2, 354-362.	7.0	10
8	Supported Anionic Gold Nanoparticle Catalysts Modified Using Highly Negatively Charged Multivacant Polyoxometalates. Angewandte Chemie - International Edition, 2022, 61, .	13.8	16
9	Control over Ligand-Exchange Positions of Thiolate-Protected Gold Nanoclusters Using Steric Repulsion of Protecting Ligands. Journal of the American Chemical Society, 2022, 144, 12310-12320.	13.7	30
10	Ni ₂ P Nanoalloy as an Airâ€6table and Versatile Hydrogenation Catalyst in Water: Pâ€Alloying Strategy for Designing Smart Catalysts. Chemistry - A European Journal, 2021, 27, 4439-4446.	3.3	18
11	Identification of hydrogen species on Pt/Al ₂ O ₃ by <i>in situ</i> inelastic neutron scattering and their reactivity with ethylene. Catalysis Science and Technology, 2021, 11, 116-123.	4.1	6
12	Autopolymerization of 2-bromo-3-methoxythiophene, analysis of reaction products and estimation of polymer structure. Polymer Journal, 2021, 53, 429-438.	2.7	1
13	Silyleneâ€Bridged Tetranuclear Palladium Cluster as a Catalyst for Hydrogenation of Alkenes and Alkynes. ChemCatChem, 2021, 13, 169-173.	3.7	10
14	Effect of Ligand on the Electronic State of Gold in Ligand-Protected Gold Clusters Elucidated by X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 3143-3149.	3.1	10
15	Hydrosilylation of carbonyls over electron-enriched Ni sites of intermetallic compound Ni ₃ Ga heterogeneous catalyst. Chemical Communications, 2021, 57, 4239-4242.	4.1	4
16	Air-Stable and Reusable Cobalt Phosphide Nanoalloy Catalyst for Selective Hydrogenation of Furfural Derivatives. ACS Catalysis, 2021, 11, 750-757.	11.2	60
17	Formation of Mixedâ€Valence Luminescent Silver Clusters via Cationâ€Coupled Electronâ€Transfer in a Redoxâ€Active Ionic Crystal Based on a Dawsonâ€type Polyoxometalate with Closed Pores. European Journal of Inorganic Chemistry, 2021, 2021, 1531-1535.	2.0	5
18	Support-Boosted Nickel Phosphide Nanoalloy Catalysis in the Selective Hydrogenation of Maltose to Maltitol. ACS Sustainable Chemistry and Engineering, 2021, 9, 6347-6354.	6.7	19

#	Article	IF	CITATIONS
19	Single-Crystal Cobalt Phosphide Nanorods as a High-Performance Catalyst for Reductive Amination of Carbonyl Compounds. Jacs Au, 2021, 1, 501-507.	7.9	34
20	Observation of Adsorbed Hydrogen Species on Supported Metal Catalysts by Inelastic Neutron Scattering. Topics in Catalysis, 2021, 64, 660-671.	2.8	2
21	Methane coupling and hydrogen evolution induced by palladium-loaded gallium oxide photocatalysts in the presence of water vapor. Journal of Catalysis, 2021, 397, 192-200.	6.2	29
22	A nickel phosphide nanoalloy catalyst for the C-3 alkylation of oxindoles with alcohols. Scientific Reports, 2021, 11, 10673.	3.3	10
23	A Molecular Hybrid of an Atomically Precise Silver Nanocluster and Polyoxometalates for H 2 Cleavage into Protons and Electrons. Angewandte Chemie, 2021, 133, 17131-17135.	2.0	6
24	Synthesis and Isolation of an Anionic Bis(dipyrido-annulated) N-Heterocyclic Carbene CCC-Pincer Iridium(III) Complex by Facile C–H Bond Activation. Inorganic Chemistry, 2021, 60, 9970-9976.	4.0	4
25	A Molecular Hybrid of an Atomically Precise Silver Nanocluster and Polyoxometalates for H ₂ Cleavage into Protons and Electrons. Angewandte Chemie - International Edition, 2021, 60, 16994-16998.	13.8	38
26	Innentitelbild: Creation of Highâ€Performance Heterogeneous Photocatalysts by Controlling Ligand Desorption and Particle Size of Gold Nanocluster (Angew. Chem. 39/2021). Angewandte Chemie, 2021, 133, 21242-21242.	2.0	0
27	Base Catalysis of Sodium Salts of [Ta6â^'xNbxO19]8â^' Mixed-Oxide Clusters. Symmetry, 2021, 13, 1267.	2.2	4
28	Creation of Highâ∈Performance Heterogeneous Photocatalysts by Controlling Ligand Desorption and Particle Size of Gold Nanocluster. Angewandte Chemie, 2021, 133, 21510-21520.	2.0	12
29	Creation of Highâ€Performance Heterogeneous Photocatalysts by Controlling Ligand Desorption and Particle Size of Gold Nanocluster. Angewandte Chemie - International Edition, 2021, 60, 21340-21350.	13.8	74
30	Thermal stability of crown-motif $[Au9(PPh3)8]3+$ and $[MAu8(PPh3)8]2+$ $(M = Pd, Pt)$ clusters: Effects of gas composition, single-atom doping, and counter anions. Journal of Chemical Physics, 2021, 155, 044307.	3.0	5
31	Hydrotalcite-Supported Cobalt Phosphide Nanorods as a Highly Active and Reusable Heterogeneous Catalyst for Ammonia-Free Selective Hydrogenation of Nitriles to Primary Amines. ACS Sustainable Chemistry and Engineering, 2021, 9, 11238-11246.	6.7	16
32	Simple and high-yield preparation of carbon-black-supported $\hat{a}^{1}/41$ nm platinum nanoclusters and their oxygen reduction reactivity. Nanoscale, 2021, 13, 14679-14687.	5.6	12
33	Air-stable and reusable nickel phosphide nanoparticle catalyst for the highly selective hydrogenation of <scp>d</scp> -glucose to <scp>d</scp> -sorbitol. Green Chemistry, 2021, 23, 2010-2016.	9.0	34
34	xTunes: A new XAS processing tool for detailed and on-the-fly analysis. Radiation Physics and Chemistry, 2020, 175, 108270.	2.8	36
35	\hat{I}^3 -Alumina-supported Pt ₁₇ cluster: controlled loading, geometrical structure, and size-specific catalytic activity for carbon monoxide and propylene oxidation. Nanoscale Advances, 2020, 2, 669-678.	4.6	16
36	Synthesis and Structural Analysis of Four Coordinate (Arylimido)niobium(V) Dimethyl Complexes Containing Phenoxide Ligand: MAO-Free Ethylene Polymerization by the Cationic Nb(V)–Methyl Complex. Organometallics, 2020, 39, 3742-3758.	2.3	4

#	Article	lF	Citations
37	Nickel phosphide nanoalloy catalyst for the selective deoxygenation of sulfoxides to sulfides under ambient H ₂ pressure. Organic and Biomolecular Chemistry, 2020, 18, 8827-8833.	2.8	18
38	Self-activated Rh–Zr mixed oxide as a nonhazardous cocatalyst for photocatalytic hydrogen evolution. Chemical Science, 2020, 11, 6862-6867.	7.4	12
39	Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation. Nature Communications, 2020, 11 , 2838.	12.8	169
40	Active, Selective, and Durable Catalyst for Alkane Dehydrogenation Based on a Well-Designed Trimetallic Alloy. ACS Catalysis, 2020, 10, 5163-5172.	11.2	46
41	Activation of Waterâ€Splitting Photocatalysts by Loading with Ultrafine Rh–Cr Mixedâ€Oxide Cocatalyst Nanoparticles. Angewandte Chemie, 2020, 132, 7142-7148.	2.0	7
42	Activation of Waterâ€Splitting Photocatalysts by Loading with Ultrafine Rh–Cr Mixedâ€Oxide Cocatalyst Nanoparticles. Angewandte Chemie - International Edition, 2020, 59, 7076-7082.	13.8	48
43	Electron Microscopic Observation of an Icosahedral Au ₁₃ Core in Au ₂₅ (SePh) ₁₈ and Reversible Isomerization between Icosahedral and Face-Centered Cubic Cores in Au ₁₄₄ (SC ₂ H ₄ Ph) ₆₀ . Iournal of Physical Chemistry C. 2020, 124, 6907-6912.	3.1	17
44	CdTe quantum dots modified electrodes ITO-(Polycation/QDs) for carbon dioxide reduction to methanol. Applied Surface Science, 2020, 509, 145386.	6.1	8
45	Base Catalytic Activity of [Nb ₁₀ O ₂₈] ^{6–} : Effect of Countercations. Journal of Physical Chemistry C, 2020, 124, 10975-10980.	3.1	16
46	XAS Analysis of Reactions of (Arylimido)vanadium(V) Dichloride Complexes Containing Anionic NHC That Contains a Weakly Coordinating B(C ₆ F ₅) ₃ Moiety (WCA-NHC) or Phenoxide Ligands with Al Alkyls: A Potential Ethylene Polymerization Catalyst with WCA-NHC Ligands, ACS Omega, 2019, 4, 18833-18845.	3.5	33
47	Solution XAS Analysis for Exploring Active Species in Syndiospecific Styrene Polymerization and 1-Hexene Polymerization Using Half-Titanocene–MAO Catalysts: Significant Changes in the Oxidation State in the Presence of Styrene. Organometallics, 2019, 38, 4497-4507.	2.3	16
48	Direct observation of catalytically active species in reaction solution by X-ray absorption spectroscopy (XAS). Japanese Journal of Applied Physics, 2019, 58, 100502.	1.5	7
49	Structural analysis of Cu(In,Ga)Se ₂ thin-films by depth-resolved XAFS. Japanese Journal of Applied Physics, 2019, 58, 105502.	1.5	2
50	Surface Modification of PdZn Nanoparticles via Galvanic Replacement for the Selective Hydrogenation of Terminal Alkynes. ACS Applied Nano Materials, 2019, 2, 3307-3314.	5.0	28
51	Atomic-Level Understanding of the Effect of Heteroatom Doping of the Cocatalyst on Water-Splitting Activity in AuPd or AuPt Alloy Cluster-Loaded BaLa ₄ Ti ₄ O ₁₅ . ACS Applied Energy Materials, 2019, 2, 4175-4187.	5.1	61
52	X-ray Absorption Spectroscopy on Atomically Precise Metal Clusters. Bulletin of the Chemical Society of Japan, 2019, 92, 193-204.	3.2	38
53	Au ₂₅ -Loaded BaLa ₄ Ti ₄ O ₁₅ Water-Splitting Photocatalyst with Enhanced Activity and Durability Produced Using New Chromium Oxide Shell Formation Method. Journal of Physical Chemistry C, 2018, 122, 13669-13681.	3.1	67
54	Gold Ultrathin Nanorods with Controlled Aspect Ratios and Surface Modifications: Formation Mechanism and Localized Surface Plasmon Resonance. Journal of the American Chemical Society, 2018, 140, 6640-6647.	13.7	58

#	Article	IF	CITATIONS
55	Doping a Single Palladium Atom into Gold Superatoms Stabilized by PVP: Emergence of Hydrogenation Catalysis. Topics in Catalysis, 2018, 61, 136-141.	2.8	30
56	Dynamic Behavior of Rh Species in Rh/Al ₂ O ₃ Model Catalyst during Three-Way Catalytic Reaction: An <i>Operando</i> X-ray Absorption Spectroscopy Study. Journal of the American Chemical Society, 2018, 140, 176-184.	13.7	55
57	Solution XAS Analysis of Various (Imido)vanadium(V) Dichloride Complexes Containing Monodentate Anionic Ancillary Donor Ligands: Effect of Aluminium Cocatalyst in Ethylene/Norbornene (Co)polymerization. Journal of the Japan Petroleum Institute, 2018, 61, 282-287.	0.6	10
58	Superior Base Catalysis of Group 5 Hexametalates [M ₆ O ₁₉] ^{8–} (M =) Tj Journal of Physical Chemistry C, 2018, 122, 29398-29404.	ETQq0 0 (3.1) rgBT /Over 34
59	An Au ₂₅ (SR) ₁₈ Cluster with a Face-Centered Cubic Core. Journal of Physical Chemistry C, 2018, 122, 13199-13204.	3.1	33
60	Prominent hydrogenation catalysis of a PVP-stabilized Au ₃₄ superatom provided by doping a single Rh atom. Chemical Communications, 2018, 54, 5915-5918.	4.1	35
61	Solution XAS Analysis for Exploring the Active Species in Homogeneous Vanadium Complex Catalysis. Journal of the Physical Society of Japan, 2018, 87, 061014.	1.6	14
62	Synthesis of (Adamantylimido)vanadium(V) Dimethyl Complex Containing (2-Anilidomethyl)pyridine Ligand and Selected Reactions: Exploring the Oxidation State of the Catalytically Active Species in Ethylene Dimerization. Organometallics, 2017, 36, 530-542.	2.3	33
63	Structural Model of Ultrathin Gold Nanorods Based on High-Resolution Transmission Electron Microscopy: Twinned 1D Oligomers of Cuboctahedrons. Journal of Physical Chemistry C, 2017, 121, 10942-10947.	3.1	4
64	Hydrogen-Mediated Electron Doping of Gold Clusters As Revealed by In Situ X-ray and UV–vis Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2017, 8, 2368-2372.	4.6	31
65	Suppressing Isomerization of Phosphine-Protected Au ₉ Cluster by Bond Stiffening Induced by a Single Pd Atom Substitution. Inorganic Chemistry, 2017, 56, 8319-8325.	4.0	50
66	Lewis Base Catalytic Properties of [Nb ₁₀ O ₂₈] ^{6â^'} for CO ₂ Fixation to Epoxide: Kinetic and Theoretical Studies. Chemistry - an Asian Journal, 2017, 12, 1635-1640.	3.3	21
67	Monodisperse Iridium Clusters Protected by Phenylacetylene: Implication for Size-Dependent Evolution of Binding Sites. Journal of Physical Chemistry C, 2017, 121, 10936-10941.	3.1	19
68	A gold superatom with 10 electrons in Au ₁₃ (PPh ₃) ₈ (i>pSC ₆ H ₄ CO ₂ APL Materials, 2017, 5, 053402.	H), 4sub>3	<1 4 ub>.
69	Anion photoelectron spectroscopy of free [Au ₂₅] ₁₈] ^{â^'} . Nanoscale, 2017, 9, 13409-13412.	5.6	35
70	Synthesis and Structural Analysis of (Imido)vanadium Dichloride Complexes Containing 2-(2′-Benz-imidazolyl)pyridine Ligands: Effect of Al Cocatalyst for Efficient Ethylene (Co)polymerization. ACS Omega, 2017, 2, 8660-8673.	3.5	26
71	Selective and Highâ€Yield Synthesis of Oblate Superatom [PdAu ₈ (PPh ₃) ₈] ²⁺ . ChemElectroChem, 2016, 3, 1206-1211.	3.4	18
72	Rayleigh Instability and Surfactant-Mediated Stabilization of Ultrathin Gold Nanorods. Journal of Physical Chemistry C, 2016, 120, 17006-17010.	3.1	27

#	Article	IF	Citations
73	Partially oxidized iridium clusters within dendrimers: size-controlled synthesis and selective hydrogenation of 2-nitrobenzaldehyde. Nanoscale, 2016, 8, 11371-11374.	5.6	30
74	Controlled Synthesis of Carbonâ€Supported Gold Clusters for Rational Catalyst Design. Chemical Record, 2016, 16, 2338-2348.	5.8	40
7 5	Tuning the electronic structure of thiolate-protected 25-atom clusters by co-substitution with metals having different preferential sites. Dalton Transactions, 2016, 45, 18064-18068.	3.3	51
76	Halogen adsorbates on polymer-stabilized gold clusters: Mass spectrometric detection and effects on catalysis. Chinese Journal of Catalysis, 2016, 37, 1656-1661.	14.0	12
77	Selective and Highâ€Yield Synthesis of Oblate Superatom [PdAu ₈ (PPh ₃) ₈] ²⁺ . ChemElectroChem, 2016, 3, 1190-1190.	3.4	1
78	Photoinduced topographical changes on microcrystalline surfaces of diarylethenes. CrystEngComm, 2016, 18, 7229-7235.	2.6	10
79	Hierarchy of bond stiffnesses within icosahedral-based gold clusters protected by thiolates. Nature Communications, 2016, 7, 10414.	12.8	140
80	Application of group V polyoxometalate as an efficient base catalyst: a case study of decaniobate clusters. RSC Advances, 2016, 6, 16239-16242.	3.6	26
81	The electrooxidation-induced structural changes of gold di-superatomic molecules: Au ₂₃ vs. Au ₂₅ . Physical Chemistry Chemical Physics, 2016, 18, 4822-4827.	2.8	16
82	Repeated appearance and disappearance of localized surface plasmon resonance in 1.2 nm gold clusters induced by adsorption and desorption of hydrogen atoms. Nanoscale, 2016, 8, 2544-2547.	5.6	23
83	Slow-Reduction Synthesis of a Thiolate-Protected One-Dimensional Gold Cluster Showing an Intense Near-Infrared Absorption. Journal of the American Chemical Society, 2015, 137, 7027-7030.	13.7	68
84	Photoinduced cytotoxicity of a photochromic diarylethene via caspase cascade activation. Chemical Communications, 2015, 51, 10957-10960.	4.1	21
85	A Critical Size for Emergence of Nonbulk Electronic and Geometric Structures in Dodecanethiolate-Protected Au Clusters. Journal of the American Chemical Society, 2015, 137, 1206-1212.	13.7	322
86	Synthesis and Catalytic Application of Ag ₄₄ Clusters Supported on Mesoporous Carbon. Journal of Physical Chemistry C, 2015, 119, 27483-27488.	3.1	54
87	Nonscalable Oxidation Catalysis of Gold Clusters. Accounts of Chemical Research, 2014, 47, 816-824.	15.6	520
88	A twisted bi-icosahedral Au ₂₅ cluster enclosed by bulky arenethiolates. Chemical Communications, 2014, 50, 839-841.	4.1	49
89	Preferential Location of Coinage Metal Dopants (M = Ag or Cu) in [Au _{25â€"<i>x< i>< sub>M_{<i>x< i>< sub>2< sub>H_{4< sub>Ph)_{18< sub>]^{(<i>x< i>â¹¼ 1) As Determined by Extended X-ray Absorption Fine Structure and Density Functional Theory Calculations. Journal of Physical Chemistry C. 2014. 118. 25284-25290.</i>}}}</i>}</i>}	>ĝ.^'	98
90	Crystallographic and optical properties of CuInSe ₂ â \in "ZnSe system. Japanese Journal of Applied Physics, 2014, 53, 05FW07.	1.5	13

#	Article	IF	Citations
91	Thiolate-Mediated Selectivity Control in Aerobic Alcohol Oxidation by Porous Carbon-Supported Au ₂₅ Clusters. ACS Catalysis, 2014, 4, 3696-3700.	11.2	168
92	Selective Hydrogenation of 4-Nitrobenzaldehyde to 4-Aminobenzaldehyde by Colloidal RhCu Bimetallic Nanoparticles. Topics in Catalysis, 2014, 57, 1049-1053.	2.8	15
93	Surface Plasmon Resonance in Gold Ultrathin Nanorods and Nanowires. Journal of the American Chemical Society, 2014, 136, 8489-8491.	13.7	76
94	Au ₂₅ Clusters Containing Unoxidized Tellurolates in the Ligand Shell. Journal of Physical Chemistry Letters, 2014, 5, 2072-2076.	4.6	54
95	Low-Temperature Synthesis of Perovskite-Type (Na,K)NbO3 through Nb6O198â^' Clusters by Dissolution–Precipitation Method. Bulletin of the Chemical Society of Japan, 2014, 87, 746-750.	3.2	2
96	CHAPTER 10. Metal Clusters in Catalysis. RSC Smart Materials, 2014, , 291-322.	0.1	3
97	Selenolate-Protected Au ₃₈ Nanoclusters: Isolation and Structural Characterization. Journal of Physical Chemistry Letters, 2013, 4, 3181-3185.	4.6	78
98	Phase transition of ferroelectric (LixNa1â^'x)NbO3 films with 0â€‰â‰æ€‰xâ€‰â‰æ€‰0.13 by applying an Applied Physics Letters, 2013, 102, .	elegtgic fie	ld. ₈
99	Formation of a Pd@Au ₁₂ Superatomic Core in Au ₂₄ Pd ₁ (SC ₁₂ H ₂₅) ₁₈ Probed by ¹⁹⁷ Au Mössbauer and Pd K-Edge EXAFS Spectroscopy. Journal of Physical Chemistry Letters, 2013. 4. 3579-3583.	4.6	89
100	Fabrication of Transparent <scp><scp>Pb</scp></scp> Fabrication of the American Ceramic Society, 2013, 96, 3782-3787.Fabrication of the American Ceramic Society, 2013, 96, 3782-3787.	s <b suab>) <s< td=""><td>cp22 scp>O<</td></s<>	cp 2 2 scp>O<
101	Laser scanning microscopy observation of domain switching in NaNbO <inf>3</inf> epitaxial film., 2013,,.		1
102	Temperature dependence of the photoinduced micro-crystalline surface topography of a diarylethene. CrystEngComm, 2013, 15, 8400.	2.6	9
103	Binding Motif of Terminal Alkynes on Gold Clusters. Journal of the American Chemical Society, 2013, 135, 9450-9457.	13.7	179
104	Photoinduced Self-Epitaxial Crystal Growth of a Diarylethene Derivative with Antireflection Moth-Eye and Superhydrophobic Lotus Effects. Langmuir, 2013, 29, 8164-8169.	3.5	26
105	Dendrimer-Encapsulated Copper Cluster as a Chemoselective and Regenerable Hydrogenation Catalyst. ACS Catalysis, 2013, 3, 182-185.	11.2	85
106	Fabrication of lead-free piezoelectric NaNbO ₃ ceramics at low temperature using NaNbO ₃ nanoparticles synthesized by solvothermal method. Journal of the Ceramic Society of Japan, 2013, 121, 116-119.	1.1	11
107	Selective Hydrogenation of Nitroaromatics by Colloidal Iridium Nanoparticles. Chemistry Letters, 2013, 42, 1023-1025.	1.3	22
108	Needle-like NaNbO3 Synthesis via Nb6O198Ⱂ Cluster Using Na3NbO4 Precursor by Dissolution–Precipitation Method. Chemistry Letters, 2013, 42, 380-382.	1.3	13

#	Article	IF	Citations
109	Preparation of needle- and plate-like NaTaO ₃ by molten NaOH method. Journal of the Ceramic Society of Japan, 2013, 121, 109-112.	1.1	3
110	Wide Band Gap and p-Type Conductive BaCuSeF Thin Films Fabricated by Pulsed Laser Deposition. Japanese Journal of Applied Physics, 2012, 51, 10NC40.	1.5	7
111	Structural Study of Cu-Deficient Cu _{2(1-x)} ZnSnSe ₄ Solar Cell Materials by X-ray Diffraction and X-ray Absorption Fine Structure. Japanese Journal of Applied Physics, 2012, 51, 10NC28.	1.5	6
112	The Effects of Charges at the N- and C-Termini of Short Peptides on Their Secondary and Self-assembled Structures. Chemistry Letters, 2012, 41, 549-551.	1.3	5
113	Structural and Optical Properties of In-Free Cu ₂ ZnSn(S,Se) ₄ Solar Cell Materials. Japanese Journal of Applied Physics, 2012, 51, 10NC29.	1.5	20
114	Photoinduced Reversible Heteroepitaxial Microcrystal Growth of a Photochromic Diarylethene on (110) Surface of SrTiO3. Crystal Growth and Design, 2012, 12, 1464-1468.	3.0	9
115	Fabrication of 100-Oriented (Na _{0.5} K _{0.5})NbO ₃ â€"BaZrO ₃ 3â€"(Bi _{0.5} Li _{0.5} 0.50.50.510.50.50.510.510.5111111111111111111111111111 <td>.5)T 1.5</td> <td>iQ₃</td>	.5)T 1.5	iQ ₃
116	Photoinduced Formation of Superhydrophobic Surface on Which Contact Angle of a Water Droplet Exceeds 170° by Reversible Topographical Changes on a Diarylethene Microcrystalline Surface. Langmuir, 2012, 28, 17817-17824.	3.5	31
117	Laser beam scanning microscope and piezoresponse force microscope studies on domain structured in 001-, 110-, and 111-oriented NaNbO3 films. Journal of Applied Physics, 2012, 112, 052007.	2.5	23
118	A New Binding Motif of Sterically Demanding Thiolates on a Gold Cluster. Journal of the American Chemical Society, 2012, 134, 14295-14297.	13.7	122
119	Fabrication of 100-Oriented (Na0.5K0.5)NbO3–BaZrO3–(Bi0.5Li0.5)TiO3Films on Si Substrate Using LaNiO3Layer. Japanese Journal of Applied Physics, 2012, 51, 09LA06.	1.5	2
120	Structural Study of Cu-Deficient Cu _{2(1-<i>x</i>)} ZnSnSe ₄ Solar Cell Materials by X-ray Diffraction and X-ray Absorption Fine Structure. Japanese Journal of Applied Physics, 2012, 51, 10NC28.	1.5	13
121	Wide Band Gap and p-Type Conductive BaCuSeF Thin Films Fabricated by Pulsed Laser Deposition. Japanese Journal of Applied Physics, 2012, 51, 10NC40.	1.5	6
122	Ceria-supported ruthenium catalysts for the synthesis of indole via dehydrogenative N-heterocyclization. Catalysis Science and Technology, 2011, 1, 1340.	4.1	31
123	Study on domain structure of NaNbO <inf>3</inf> films by laser beam scanning microscope and piezoresponse force microscope., 2011,,.		O
124	Reversible Photocontrol of Surface Wettability between Hydrophilic and Superhydrophobic Surfaces on an Asymmetric Diarylethene Solid Surface. Langmuir, 2011, 27, 6395-6400.	3.5	64
125	Fabrication of (K,Na)NbO <inf>3</inf> thin films on Si substrate by pulsed laser deposition. , 2011, , .		1
126	Structural Analysis of Group V, VI, and VII Metal Compounds by XAFS. Journal of Physical Chemistry C, 2011, 115, 23653-23663.	3.1	36

#	Article	IF	CITATIONS
127	Synthetic Mechanism of Perovskite-Type KNbO ₃ by Modified Solid-State Reaction Process. Chemistry of Materials, 2011, 23, 4498-4504.	6.7	26
128	Wide band gap and pâ€ŧype conductive Cu–Nb–O films. Physica Status Solidi - Rapid Research Letters, 2011, 5, 153-155.	2.4	10
129	Intermolecular Coupling of Alkynes with Acrylates by Recyclable Oxideâ€5upported Ruthenium Catalysts: Formation of Distorted Ruthenium(IV)â€oxo Species on Ceria as a Key Precursor of Active Species. Advanced Synthesis and Catalysis, 2011, 353, 2837-2843.	4.3	23
130	Fabrication of Lead-Free (Na _{0.5} K _{0.5})NbO ₃ â€"BaZrO ₃ â€"(Bi _{0.5} Li _{Thin Films on (111)Pt/Ti/SiO₂/(100)Si Substrate by Pulsed Laser Deposition. Japanese Journal of Applied Physics, 2011, 50, 09NA07.}	∙0.5	>)Ti ₅ O _{3<}
131	A structural study of Cu–In–Se compounds by x-ray absorption fine structure. Journal of Materials Research, 2011, 26, 1504-1516.	2.6	38
132	Fabrication of Lead-Free (Na _{0.5} 6.59.059.053â€"BaZrO ₃ 6.56.59.0519.059.059.059.059.059.059.059.059.059.059.059.05 <td>·0.5성sub></td> <td>>)TiO_{3<}</td>	·0.5성sub>	>)TiO _{3<}
133	Preparation of needle-like NaNbO3 by molten NaOH method. Journal of the Ceramic Society of Japan, 2010, 118, 741-744.	1.1	9
134	Phototunable Diarylethene Microcrystalline Surfaces: Lotus and Petal Effects upon Wetting. Angewandte Chemie - International Edition, 2010, 49, 5942-5944.	13.8	105
135	Ferroelectric and antiferroelectric properties of AgNbO3 films fabricated on (001), (110), and (111)SrTiO3 substrates by pulsed laser deposition. Applied Physics Letters, 2010, 97, .	3.3	24
136	Ferroelectric Properties of (Na _{0.5} 6.59.059.0538€"BaZrO ₃ 8€"(Bi _{0.5} 1.51.51.59.059.059.051.59.059.059.059.059.059.059.059.059.059.05 <td>∙0.5⟨∫sub></td> <td>>)TiO_{3<}</td>	∙0.5⟨∫sub>	>)TiO _{3<}
137	Investigation of the Formation Process of Photodeposited Rh Nanoparticles on TiO ₂ by In Situ Time-Resolved Energy-Dispersive XAFS Analysis. Langmuir, 2010, 26, 13907-13912.	3.5	28
138	Observation of domain structure in 001 orientated NaNbO3 films deposited on (001)SrTiO3 substrates by laser beam scanning microscopy. Applied Physics Letters, 2010, 96, 092901.	3.3	23
139	Ferroelectric Properties of (Na _{0.5} K _{0.5})NbO ₃ -Based Thin Films Deposited on Pt/(001)MgO Substrate by Pulsed Laser Deposition with NaNbO ₃ Buffer Layer. Japanese Journal of Applied Physics, 2009, 48, 09KA13.	1.5	20
140	Fabrication of Lead-Free (Na _{0.52} K _{0.44} Li _{0.04})(Nb _{0.84} Ta _{0.10} Sb _{0 Ceramics by a Modified Solid-State Reaction Method. Japanese Journal of Applied Physics, 2009, 48, 091402.}	.06)O _{{8} ub>3
141	Structural analysis of group V, VI, VII metal compounds by XAFS and DFT calculation. Journal of Physics: Conference Series, 2009, 190, 012073.	0.4	12
142	In Situ Time-Resolved Energy-Dispersive XAFS Study on Reduction Behavior of Pt Supported on TiO2 and Al2O3. Catalysis Letters, 2009, 131, 413-418.	2.6	22
143	Characterization of sulfated zirconia prepared using reference catalysts and application to several model reactions. Applied Catalysis A: General, 2009, 360, 89-97.	4.3	27
144	The effect of SrTiO3 substrate orientation on the surface morphology and ferroelectric properties of pulsed laser deposited NaNbO3 films. Applied Physics Letters, 2009, 95, 062906.	3.3	45

#	Article	lF	CITATIONS
145	Ferroelectric properties of NaNbO3-BaTiO3 thin films deposited on SrRuO3/(001)SrTiO3 substrate by pulsed laser deposition. Journal of the Ceramic Society of Japan, 2009, 117, 66-71.	1.1	7
146	Kinetic study of photo-oxidation of NH3 over TiO2. Applied Catalysis B: Environmental, 2008, 82, 67-76.	20.2	25
147	Promotion effect of tungsten oxide on photo-assisted selective catalytic reduction of NO with NH3 over TiO2. Applied Catalysis B: Environmental, 2008, 83, 123-130.	20.2	42
148	Metal oxide promoted TiO2 catalysts for photo-assisted selective catalytic reduction of NO with NH3. Research on Chemical Intermediates, 2008, 34, 487-494.	2.7	17
149	In Situ Time-Resolved Energy-Dispersive XAFS Study on Photodeposition of Rh Particles on a TiO ₂ Photocatalyst. Journal of Physical Chemistry C, 2008, 112, 8495-8498.	3.1	39
150	XAFS Study of Tungsten L ₁ - and L ₃ -Edges:  Structural Analysis of WO ₃ Species Loaded on TiO ₂ as a Catalyst for Photo-oxidation of NH ₃ . Journal of Physical Chemistry C, 2008, 112, 6869-6879.	3.1	161
151	Mechanism of Photo-Oxidation of NH3over TiO2:  Fourier Transform Infrared Study of the Intermediate Species. Journal of Physical Chemistry C, 2007, 111, 11077-11085.	3.1	69
152	XAFS Study of Active Tungsten Species on WO3/TiO2 as a Catalyst for Photo-SCR. AIP Conference Proceedings, 2007, , .	0.4	3
153	Energy-Dispersive XAFS Study on Reduction Behavior of Pt Supported on TiO2 and Al2O3. AIP Conference Proceedings, 2007, , .	0.4	1
154	Photo-oxidation of NH3 over various TiO2. Catalysis Today, 2007, 120, 220-225.	4.4	38
155	Visible Light Absorbed NH ₂ Species Derived from NH ₃ Adsorbed on TiO ₂ for Photoassisted Selective Catalytic Reduction. Journal of Physical Chemistry C, 2007, 111, 14189-14197.	3.1	48
156	Development of the efficient TiO2 photocatalyst in photoassisted selective catalytic reduction of NO with NH3. Catalysis Today, 2006, 111, 266-270.	4.4	44
157	Supported Anionic Gold Nanoparticle Catalysts Modified Using Highly Negatively Charged Multivacant Polyoxometalates. Angewandte Chemie, 0, , .	2.0	4