## Jerrold S Meyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6406731/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                          | lF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A mindfulness-based stress management program for caregivers of allogeneic hematopoietic stem cell<br>transplant (HCT) patients: Protocol for a randomized controlled trial. PLoS ONE, 2022, 17, e0266316.                                       | 2.5 | 2         |
| 2  | Transient refugees' social support, mental health, and physiological markers: Evidence from Serbian<br>asylum centers. American Journal of Human Biology, 2022, 34, e23747.                                                                      | 1.6 | 5         |
| 3  | Social Fear in US Infants: The Roles of Hair and Salivary Cortisol Yale Journal of Biology and Medicine, 2022, 95, 71-85.                                                                                                                        | 0.2 | 0         |
| 4  | Peer-led family-centred problem management plus for immigrants (PMP-I) for mental health promotion<br>among immigrants in USA: protocol for a pilot, randomised controlled feasibility trial. BMJ Open,<br>2022, 12, e061353.                    | 1.9 | 0         |
| 5  | Assessment of prenatal stressâ€related cortisol exposure: focus on cortisol accumulation in hair and nails. Developmental Psychobiology, 2021, 63, 409-436.                                                                                      | 1.6 | 15        |
| 6  | Hair cortisol in captive corral-housed baboons. General and Comparative Endocrinology, 2021, 302, 113692.                                                                                                                                        | 1.8 | 3         |
| 7  | A culturally and gender responsive stress and chronic disease prevention intervention for<br>low/no-income African American men: The MOCHA moving forward randomized control trial<br>protocol. Contemporary Clinical Trials, 2021, 101, 106240. | 1.8 | 7         |
| 8  | Hair Cortisol and Self-Injurious Behavior Among Children With Autism Spectrum Disorder. American<br>Journal on Intellectual and Developmental Disabilities, 2021, 126, 158-166.                                                                  | 1.6 | 2         |
| 9  | Infant diurnal cortisol predicts sleep. Journal of Sleep Research, 2021, 30, e13357.                                                                                                                                                             | 3.2 | 6         |
| 10 | Children's fingernail cortisol among BaYaka foragers of the Congo Basin: associations with fathers'<br>roles. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200031.                                       | 4.0 | 12        |
| 11 | Socioeconomic factors, stress, hair cortisol, and white matter microstructure in children.<br>Developmental Psychobiology, 2021, 63, e22147.                                                                                                     | 1.6 | 5         |
| 12 | A Rhesus Monkey Model of Non-suicidal Self-Injury. Frontiers in Behavioral Neuroscience, 2021, 15,<br>674127.                                                                                                                                    | 2.0 | 6         |
| 13 | Pregnancy and Infant Development (PRIDE)—a preliminary observational study of maternal adversity<br>and infant development. BMC Pediatrics, 2021, 21, 452.                                                                                       | 1.7 | 5         |
| 14 | Lower hair cortisol among patients with sickle cell disease may indicate decreased adrenal reserves.<br>American Journal of Blood Research, 2021, 11, 140-148.                                                                                   | 0.6 | 0         |
| 15 | Adverse childhood experiences, post-traumatic stress disorder symptoms, and self-reported stress<br>among traditional and nontraditional college students. Journal of American College Health, 2020, 68,<br>411-418.                             | 1.5 | 24        |
| 16 | Does hair cortisol really reflect perceived stress? Findings from low-income mother-preschooler dyads. Psychoneuroendocrinology, 2020, 111, 104478.                                                                                              | 2.7 | 16        |
| 17 | Maternal hair cortisol levels as a novel predictor of neonatal abstinence syndrome severity: A pilot<br>feasibility study. Developmental Psychobiology, 2020, 62, 116-122.                                                                       | 1.6 | 6         |
| 18 | Forced migration experiences, mental well-being, and nail cortisol among recently settled refugees in<br>Serbia. Social Science and Medicine, 2020, 258, 113070.                                                                                 | 3.8 | 17        |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Maternal expressive suppression moderates the relations between maternal and child hair cortisol.<br>Developmental Psychobiology, 2020, 62, 1150-1157.                                                                         | 1.6 | 4         |
| 20 | Infants of mothers with higher physiological stress show alterations in brain function.<br>Developmental Science, 2020, 23, e12976.                                                                                            | 2.4 | 25        |
| 21 | Developmental outcomes of early adverse care on amygdala functional connectivity in nonhuman primates. Development and Psychopathology, 2020, 32, 1579-1596.                                                                   | 2.3 | 20        |
| 22 | Cortisol and socioeconomic status in early childhood: A multidimensional assessment. Development and Psychopathology, 2020, 32, 1876-1887.                                                                                     | 2.3 | 29        |
| 23 | Alopecia in rhesus macaques ( <i>Macaca mulatta</i> ): Association with pregnancy and chronic stress.<br>Journal of Medical Primatology, 2019, 48, 251-256.                                                                    | 0.6 | 8         |
| 24 | Physiological and economic benefits of abandoning invasive surgical procedures and enhancing animal welfare in swine production. Scientific Reports, 2019, 9, 16093.                                                           | 3.3 | 12        |
| 25 | Effects of early life stress on cocaine self-administration in post-pubertal male and female rhesus macaques. Psychopharmacology, 2019, 236, 2785-2796.                                                                        | 3.1 | 4         |
| 26 | Aggression and social support predict longâ€ŧerm cortisol levels in captive tufted capuchin monkeys<br>( <i>Cebus [Sapajus] apella</i> ). American Journal of Primatology, 2019, 81, e23001.                                   | 1.7 | 16        |
| 27 | Effects of early maternal care on adolescent attention bias to threat in nonhuman primates.<br>Developmental Cognitive Neuroscience, 2019, 38, 100643.                                                                         | 4.0 | 17        |
| 28 | Socioeconomic Disparities in Chronic Physiologic Stress Are Associated With Brain Structure in<br>Children. Biological Psychiatry, 2019, 86, 921-929.                                                                          | 1.3 | 56        |
| 29 | Emotion regulation moderates the association between parent and child hair cortisol concentrations. Developmental Psychobiology, 2019, 61, 1064-1078.                                                                          | 1.6 | 22        |
| 30 | Investigating relations among stress, sleep and nail cortisol and DHEA. Stress, 2018, 21, 188-193.                                                                                                                             | 1.8 | 28        |
| 31 | Cortisol in Neonatal Mother's Milk Predicts Later Infant Social and Cognitive Functioning in Rhesus<br>Monkeys. Child Development, 2018, 89, 525-538.                                                                          | 3.0 | 45        |
| 32 | Salivary cortisol reactivity in preschoolers is associated with hair cortisol and behavioral problems.<br>Stress, 2018, 21, 28-35.                                                                                             | 1.8 | 33        |
| 33 | Effect of Chronic Social Stress on Prenatal Transfer of Antitetanus Immunity in Captive Breeding<br>Rhesus Macaques (Macaca mulatta). Journal of the American Association for Laboratory Animal<br>Science, 2018, 57, 357-367. | 1.2 | 5         |
| 34 | Mini-review of hair cortisol concentration for evaluation of Cushing syndrome. Expert Review of Endocrinology and Metabolism, 2018, 13, 225-231.                                                                               | 2.4 | 24        |
| 35 | Maternal distress and hair cortisol in pregnancy among women with elevated adverse childhood experiences. Psychoneuroendocrinology, 2018, 95, 145-148.                                                                         | 2.7 | 42        |
| 36 | Quantification of hair cortisol concentration in common marmosets ( <i>Callithrix jacchus</i> ) and tufted capuchins ( <i>Cebus apella</i> ). American Journal of Primatology, 2018, 80, e22879.                               | 1.7 | 10        |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Behavioral Phenotyping in Developmental Neurotoxicology—Simple Approaches Using Unconditioned<br>Behaviors in Rodents. , 2018, , 287-308.                                                                              |     | 4         |
| 38 | Assessing significant (>30%) alopecia as a possible biomarker for stress in captive rhesus monkeys<br>( <i>Macaca mulatta</i> ). American Journal of Primatology, 2017, 79, 1-8.                                       | 1.7 | 17        |
| 39 | Associations between early life experience, chronic HPA axis activity, and adult social rank in rhesus monkeys. Social Neuroscience, 2017, 12, 92-101.                                                                 | 1.3 | 29        |
| 40 | Differential relationships between chronic hormone profiles in pregnancy and maternal investment in rhesus monkey mothers with hair loss in the neonatal period. American Journal of Primatology, 2017, 79, 1-8.       | 1.7 | 9         |
| 41 | Responses to the Human Intruder Test are related to hair cortisol phenotype and sex in rhesus macaques ( <i>Macaca mulatta</i> ). American Journal of Primatology, 2017, 79, 1-10.                                     | 1.7 | 21        |
| 42 | Hair cortisol in the evaluation of Cushing syndrome. Endocrine, 2017, 56, 164-174.                                                                                                                                     | 2.3 | 32        |
| 43 | Socioeconomic status, hair cortisol and internalizing symptoms in parents and children.<br>Psychoneuroendocrinology, 2017, 78, 142-150.                                                                                | 2.7 | 105       |
| 44 | Chronic stress in the mother-infant dyad: Maternal hair cortisol, infant salivary cortisol and interactional synchrony. , 2017, 47, 92-102.                                                                            |     | 59        |
| 45 | Shaping long-term primate development: Telomere length trajectory as an indicator of early maternal maltreatment and predictor of future physiologic regulation. Development and Psychopathology, 2017, 29, 1539-1551. | 2.3 | 20        |
| 46 | Relationships between affiliative social behavior and hair cortisol concentrations in semi-free ranging rhesus monkeys. Psychoneuroendocrinology, 2017, 84, 109-115.                                                   | 2.7 | 33        |
| 47 | Infant hair cortisol: associations with salivary cortisol and environmental context. Developmental Psychobiology, 2017, 59, 26-38.                                                                                     | 1.6 | 60        |
| 48 | A longitudinal study of hair cortisol concentrations in <i>Macaca nemestrina</i> mothers and infants. American Journal of Primatology, 2017, 79, 1-9.                                                                  | 1.7 | 21        |
| 49 | Hair cortisol and lifetime discrimination: Moderation by subjective social status. Health Psychology<br>Open, 2017, 4, 205510291769517.                                                                                | 1.4 | 14        |
| 50 | Developmental Neurotoxicity of Abused Drugs. , 2017, , 413-429.                                                                                                                                                        |     | 0         |
| 51 | Factors influencing alopecia and hair cortisol in rhesus macaques ( <i>Macaca mulatta</i> ). Journal of Medical Primatology, 2016, 45, 180-188.                                                                        | 0.6 | 18        |
| 52 | Intraâ€individual stability and developmental change in hair cortisol among postpartum mothers and<br>infants: Implications for understanding chronic stress. Developmental Psychobiology, 2016, 58,<br>509-518.       | 1.6 | 39        |
| 53 | Matrilineal Behavioral and Physiological Changes following the Removal of a Non-Alpha Matriarch in<br>Rhesus Macaques (Macaca mulatta). PLoS ONE, 2016, 11, e0157108.                                                  | 2.5 | 17        |
| 54 | Effect of Overcrowding on Hair Corticosterone Concentrations in Juvenile Male Wistar Rats. Journal of the American Association for Laboratory Animal Science, 2016, 55, 749-755.                                       | 1.2 | 11        |

| #  | Article                                                                                                                                                                                                              | IF               | CITATIONS      |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|
| 55 | Adverse childhood experiences and chronic hypothalamic–pituitary–adrenal activity. Stress, 2015, 18,<br>446-450.                                                                                                     | 1.8              | 82             |
| 56 | Associations between Parity, Hair Hormone Profiles during Pregnancy and Lactation, and Infant<br>Development in Rhesus Monkeys (Macaca mulatta). PLoS ONE, 2015, 10, e0131692.                                       | 2.5              | 41             |
| 57 | Introduction. ILAR Journal, 2014, 55, 217-220.                                                                                                                                                                       | 1.8              | Ο              |
| 58 | Extraction and Analysis of Cortisol from Human and Monkey Hair. Journal of Visualized Experiments, 2014, , e50882.                                                                                                   | 0.3              | 107            |
| 59 | Models of Stress in Nonhuman Primates and Their Relevance for Human Psychopathology and Endocrine Dysfunction. ILAR Journal, 2014, 55, 347-360.                                                                      | 1.8              | 66             |
| 60 | Population density-dependent hair cortisol concentrations in rhesus monkeys (Macaca mulatta).<br>Psychoneuroendocrinology, 2014, 42, 59-67.                                                                          | 2.7              | 86             |
| 61 | Inhaled oxytocin increases positive social behaviors in newborn macaques. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6922-6927.                                     | 7.1              | 107            |
| 62 | Adolescent MDMA exposure diminishes the physiological and neurotoxic consequences of an MDMA binge in female rats. Developmental Psychobiology, 2014, 56, 924-934.                                                   | 1.6              | 2              |
| 63 | Hair loss and hypothalamic-pituitary-adrenocortical axis activity in captive rhesus macaques (Macaca) Tj ETQq1                                                                                                       | 1 0.78431<br>1.2 | 4 rgBT /Overle |
| 64 | Polar bear stress hormone cortisol fluctuates with the North Atlantic Oscillation climate index.<br>Polar Biology, 2013, 36, 1525-1529.                                                                              | 1.2              | 41             |
| 65 | Effects of a short-course MDMA binge on dopamine transporter binding and on levels of dopamine and its metabolites in adult male rats. European Journal of Pharmacology, 2013, 701, 176-180.                         | 3.5              | 11             |
| 66 | Stress, the HPA axis, and nonhuman primate well-being: A review. Applied Animal Behaviour Science, 2013, 143, 135-149.                                                                                               | 1.9              | 106            |
| 67 | 3,4-methylenedioxymethamphetamine (MDMA): current perspectives. Substance Abuse and Rehabilitation, 2013, 4, 83.                                                                                                     | 4.8              | 65             |
| 68 | A Computational Hypothesis for Allostasis: Delineation of Substance Dependence, Conventional<br>Therapies, and Alternative Treatments. Frontiers in Psychiatry, 2013, 4, 167.                                        | 2.6              | 7              |
| 69 | Behavioral Disorders of Nonhuman Primates. , 2012, , 177-196.                                                                                                                                                        |                  | 8              |
| 70 | Minireview: Hair Cortisol: A Novel Biomarker of Hypothalamic-Pituitary-Adrenocortical Activity.<br>Endocrinology, 2012, 153, 4120-4127.                                                                              | 2.8              | 344            |
| 71 | Physiological and behavioral adaptation to relocation stress in differentially reared rhesus monkeys:<br>Hair cortisol as a biomarker for anxiety-related responses. Psychoneuroendocrinology, 2012, 37,<br>191-199. | 2.7              | 114            |
| 72 | Effects of testosterone on attention and memory for emotional stimuli in male rhesus monkeys.<br>Psychoneuroendocrinology, 2012, 37, 396-409.                                                                        | 2.7              | 29             |

| #  | Article                                                                                                                                                                                                                                            | IF                | CITATIONS      |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|
| 73 | Developmental neurotoxicity of abused drugs. , 2011, , 341-353.                                                                                                                                                                                    |                   | 1              |
| 74 | Effects of shampoo and water washing on hair cortisol concentrations. Clinica Chimica Acta, 2011, 412, 382-385.                                                                                                                                    | 1.1               | 93             |
| 75 | Chronic administration of THC prevents the behavioral effects of intermittent adolescent MDMA administration and attenuates MDMA-induced hyperthermia and neurotoxicity in rats. Neuropharmacology, 2011, 61, 1183-1192.                           | 4.1               | 18             |
| 76 | Acute anxiogenic-like effects of selective serotonin reuptake inhibitors are attenuated by the benzodiazepine diazepam in BALB/c mice. Pharmacology Biochemistry and Behavior, 2011, 98, 544-551.                                                  | 2.9               | 50             |
| 77 | The Nature of 3, 4-Methylenedioxymethamphetamine (MDMA)-Induced Serotonergic Dysfunction:<br>Evidence for and Against the Neurodegeneration Hypothesis. Current Neuropharmacology, 2011, 9,<br>84-90.                                              | 2.9               | 40             |
| 78 | Repeated intermittent methylenedioxymethamphetamine exposure protects against the behavioral and neurotoxic, but not hyperthermic, effects of an MDMA binge in adult rats. Synapse, 2010, 64, 421-431.                                             | 1.2               | 14             |
| 79 | Effects of 3,4â€methylenedioxymethamphetamine (MDMA) on serotonin transporter and vesicular<br>monoamine transporter 2 protein and gene expression in rats: implications for MDMA neurotoxicity.<br>Journal of Neurochemistry, 2010, 112, 951-962. | 3.9               | 40             |
| 80 | Identification and control of intrinsic bias in a multiscale computational model of drug addiction. ,<br>2010, , .                                                                                                                                 |                   | 1              |
| 81 | The effect of rearing experience and TPH2 genotype on HPA axis function and aggression in rhesus monkeys: A retrospective analysis. Hormones and Behavior, 2010, 57, 184-191.                                                                      | 2.1               | 29             |
| 82 | Testosterone may increase selective attention to threat in young male macaques. Hormones and Behavior, 2010, 58, 854-863.                                                                                                                          | 2.1               | 24             |
| 83 | Dissociation between Serotonin Neurotoxicity and Brain-Derived Neurotrophic Factor Induction following Neonatal MDMA Exposure in Rats. Developmental Neuroscience, 2009, 31, 90-94.                                                                | 2.0               | 4              |
| 84 | Repeated adolescent MDMA ("Ecstasyâ€ <del>)</del> exposure in rats increases behavioral and neuroendocrine<br>responses to a 5-HT2A/2C agonist. Brain Research, 2009, 1252, 87-93.                                                                 | 2.2               | 14             |
| 85 | Assessing reproductive profiles in female brown mouse lemurs ( <i>Microcebus rufus</i> ) from<br>Ranomafana National Park, southeast Madagascar, using fecal hormone analysis. American Journal of<br>Primatology, 2009, 71, 439-446.              | 1.7               | 7              |
| 86 | Hair cortisol predicts object permanence performance in infant rhesus macaques ( <i>Macaca) Tj ETQq0 0 0 rgBT</i>                                                                                                                                  | /Overlock         | 10 Tf 50 222   |
| 87 | Effects of testosterone on cognition in young adult male rhesus monkeys. Physiology and Behavior, 2009, 98, 524-531.                                                                                                                               | 2.1               | 17             |
| 88 | The anxiogenic drug FG7142 increases self-injurious behavior in male rhesus monkeys (Macaca) Tj ETQq0 0 0 rgB                                                                                                                                      | T  Oyerloo<br>4.3 | ck 10 Tf 50 14 |
| 89 | Alopecia: possible causes and treatments, particularly in captive nonhuman primates. Comparative<br>Medicine, 2009, 59, 18-26.                                                                                                                     | 1.0               | 55             |
| 90 | Surrogate mobility and orientation affect the early neurobehavioral development of infant rhesus                                                                                                                                                   | 1.6               | 17             |

Surrogate mobility and orientation affect the early neurobehavioral development of infant rhesus macaques (Macaca mulatta). Developmental Psychobiology, 2008, 50, 418-422. 90

| #   | Article                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Development and Characterization of a Novel Animal Model of Intermittent MDMA ("Ecstasyâ€)<br>Exposure during Adolescence. Annals of the New York Academy of Sciences, 2008, 1139, 151-163.                                                                            | 3.8 | 34        |
| 92  | A Rhesus Monkey Model of Self-Injury: Effects of Relocation Stress on Behavior and Neuroendocrine<br>Function. Biological Psychiatry, 2008, 63, 990-996.                                                                                                               | 1.3 | 135       |
| 93  | Dissociation of the Neurochemical and Behavioral Toxicology of MDMA (â€~Ecstasy') by Citalopram.<br>Neuropsychopharmacology, 2008, 33, 1192-1205.                                                                                                                      | 5.4 | 26        |
| 94  | Self-injurious Behavior: Nonhuman Primate Models for the Human Condition. , 2008, , 109-140.                                                                                                                                                                           |     | 1         |
| 95  | Neural Effects of MDMA as Determined by Functional Magnetic Resonance Imaging and Magnetic<br>Resonance Spectroscopy in Awake Marmoset Monkeys. Annals of the New York Academy of Sciences,<br>2006, 1074, 365-376.                                                    | 3.8 | 31        |
| 96  | Imaging brain activity in conscious monkeys following oral MDMA ("ecstasyâ€). Magnetic Resonance<br>Imaging, 2006, 24, 707-714.                                                                                                                                        | 1.8 | 33        |
| 97  | Analysis of endogenous cortisol concentrations in the hair of rhesus macaques. General and Comparative Endocrinology, 2006, 147, 255-261.                                                                                                                              | 1.8 | 546       |
| 98  | Repeated Adolescent 3,4-Methylenedioxymethamphetamine (MDMA) Exposure in Rats Attenuates the<br>Effects of a Subsequent Challenge with MDMA or a 5-Hydroxytryptamine1A Receptor Agonist. Journal<br>of Pharmacology and Experimental Therapeutics, 2006, 317, 838-849. | 2.5 | 37        |
| 99  | Increased responsiveness to MDMA in adult rats treated neonatally with MDMA. Neurotoxicology and Teratology, 2005, 28, 95-102.                                                                                                                                         | 2.4 | 14        |
| 100 | Repeated MDMA ("Ecstasyâ€) exposure in adolescent male rats alters temperature regulation,<br>spontaneous motor activity, attention, and serotonin transporter binding. Developmental<br>Psychobiology, 2005, 47, 145-157.                                             | 1.6 | 57        |
| 101 | The physiology and neurochemistry of self-injurious behavior: a nonhuman primate model. Frontiers<br>in Bioscience - Landmark, 2005, 10, 1.                                                                                                                            | 3.0 | 67        |
| 102 | The efficacy of diazepam treatment for the management of acute wounding episodes in captive rhesus macaques. Comparative Medicine, 2005, 55, 387-92.                                                                                                                   | 1.0 | 25        |
| 103 | Memory deficit and reduced anxiety in young adult rats given repeated intermittent MDMA treatment during the periadolescent period. Pharmacology Biochemistry and Behavior, 2004, 79, 723-731.                                                                         | 2.9 | 78        |
| 104 | Altered hypothalamic–pituitary–adrenocortical function in rhesus monkeys (Macaca mulatta) with<br>self-injurious behavior. Psychoneuroendocrinology, 2004, 29, 501-515.                                                                                                | 2.7 | 36        |
| 105 | Extinction deficits in male rhesus macaques with a history of self-injurious behavior. American<br>Journal of Primatology, 2004, 63, 41-48.                                                                                                                            | 1.7 | 20        |
| 106 | Neurotoxic effects of MDMA ("ecstasyâ€ <del>)</del> administration to neonatal rats. International Journal of<br>Developmental Neuroscience, 2004, 22, 261-271.                                                                                                        | 1.6 | 45        |
| 107 | Continuity and Change in Emotional Reactivity in Rhesus Monkeys Throughout the Prepubertal Period.<br>Motivation and Emotion, 2003, 27, 57-76.                                                                                                                         | 1.3 | 19        |
| 108 | Fenfluramine challenge, self-injurious behavior, and aggression in rhesus monkeys. Physiology and Behavior, 2003, 80, 327-331.                                                                                                                                         | 2.1 | 15        |

3.1

43

| #   | Article                                                                                                                                                                                           | IF         | CITATIONS    |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|
| 109 | Self-injurious behavior in male rhesus macaques does not reflect externally directed aggression.<br>Physiology and Behavior, 2003, 78, 33-39.                                                     | 2.1        | 31           |
| 110 | Effects of prenatal cocaine exposure on latent inhibition in 1-year-old female rats. Pharmacology<br>Biochemistry and Behavior, 2002, 72, 795-802.                                                | 2.9        | 11           |
| 111 | Prenatal cocaine effects on fear conditioning:. Neurotoxicology and Teratology, 2002, 24, 161-172.                                                                                                | 2.4        | 10           |
| 112 | Serotonergic Neurotoxicity of MDMA (Ecstasy) in the Developing Rat Brain. Annals of the New York Academy of Sciences, 2002, 965, 373-380.                                                         | 3.8        | 23           |
| 113 | Physiological correlates of self-injurious behavior in captive, socially-reared rhesus monkeys.<br>Psychoneuroendocrinology, 2000, 25, 799-817.                                                   | 2.7        | 60           |
| 114 | Effects of neonatal cocaine treatment and gender on opioid agonist-stimulated [35S]GTPÎ <sup>3</sup> S binding in the striatum and nucleus accumbens. Brain Research Bulletin, 2000, 53, 147-152. | 3.0        | 12           |
| 115 | Cocaine up-regulates norepinephrine transporter binding in the rat placenta. European Journal of<br>Pharmacology, 1999, 386, 1-6.                                                                 | 3.5        | 18           |
| 116 | Behavioral Responses to a D1 Dopamine Agonist in Weanling Rats Treated Neonatally with Cocaine and<br>Δ9-Tetrahydrocannabinol. Neurotoxicology and Teratology, 1999, 21, 375-380.                 | 2.4        | 6            |
| 117 | Distribution of Cocaine and Metabolites in the Pregnant Rat and Fetus in a Chronic Subcutaneous<br>Injection Model. Neurotoxicology and Teratology, 1999, 21, 639-646.                            | 2.4        | 13           |
| 118 | Effects of Prenatal Cocaine Exposure on Serotonin and Norepinephrine Transporter Density in the Rat<br>Braina. Annals of the New York Academy of Sciences, 1998, 846, 412-414.                    | 3.8        | 13           |
| 119 | Relationship between [125I]RTI-55-labeled cocaine binding sites and the serotonin transporter in rat placenta. American Journal of Physiology - Cell Physiology, 1998, 275, C1621-C1629.          | 4.6        | 16           |
| 120 | Behavioral Assessment in Developmental Neurotoxicology. , 1998, , 403-426.                                                                                                                        |            | 5            |
| 121 | Principles of Neurotransmission and Implications for Network Modeling. Advances in Psychology, 1997, , 82-104.                                                                                    | 0.1        | Ο            |
| 122 | A pharmacological and endocrinological study of female insemination inPhormia regina (Diptera:) Tj ETQq0 0 0 r                                                                                    | gBT /Overl | ocg 10 Tf 50 |
| 123 | Monoamine transporters and the neurobehavioral teratology of cocaine. Pharmacology Biochemistry and Behavior, 1996, 55, 585-593.                                                                  | 2.9        | 33           |
| 124 | Prenatal cocaine alters dopamine transporter binding in postnatal day 10 rat striatum. , 1996, 23,<br>335-343.                                                                                    |            | 17           |
| 125 | Prenatal cocaine treatment reduces haloperidol-induced catalepsy on postnatal day 10.<br>Neurotoxicology and Teratology, 1994, 16, 193-199.                                                       | 2.4        | 16           |
|     |                                                                                                                                                                                                   |            |              |

Cocaine binding sites in fetal rat brain: implications for prenatal cocaine action. Psychopharmacology, 1993, 112, 445-451.

8

| #   | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Prenatal cocaine administration stimulates fetal brain tyrosine hydroxylase activity. Brain Research, 1993, 608, 129-137.                                                                                                | 2.2 | 43        |
| 128 | Lack of Behavioral Sensitization to Repeated Cocaine Administration from Postnatal Days 1 to 10.<br>International Journal of Neuroscience, 1993, 72, 107-113.                                                            | 1.6 | 23        |
| 129 | Prenatal Neurochemistry of Cocaine. Annals of the New York Academy of Sciences, 1992, 654, 487-488.                                                                                                                      | 3.8 | 6         |
| 130 | Effects of prenatal cocaine on behavioral responses to a cocaine challenge on postnatal day 11.<br>Neurotoxicology and Teratology, 1992, 14, 183-189.                                                                    | 2.4 | 44        |
| 131 | Regional patterns of brain growth during the first three weeks following early adrenalectomy.<br>Physiology and Behavior, 1991, 49, 233-237.                                                                             | 2.1 | 18        |
| 132 | Exogenous tyrosine potentiates the methylphenidate-induced increase in extracellular dopamine in the nucleus accumbens: a microdialysis study. Brain Research, 1991, 560, 97-105.                                        | 2.2 | 33        |
| 133 | Circulating Catecholamine Concentrations in Cocaine-Exposed Neonates: A Pilot Study. Pediatrics, 1991, 88, 481-485.                                                                                                      | 2.1 | 76        |
| 134 | Seeking the sources of simian suffering. Behavioral and Brain Sciences, 1990, 13, 31-32.                                                                                                                                 | 0.7 | 2         |
| 135 | Long day lengths promote brain growth in meadow voles. Developmental Brain Research, 1990, 53, 264-269.                                                                                                                  | 1.7 | 24        |
| 136 | Long day lengths enhance myelination of midbrain and hindbrain regions of developing meadow voles.<br>Developmental Brain Research, 1990, 55, 103-108.                                                                   | 1.7 | 14        |
| 137 | Enhanced Brain Cell Proliferation Following Early Adrenalectomy in Rats. Journal of Neurochemistry, 1989, 53, 241-248.                                                                                                   | 3.9 | 57        |
| 138 | Maze-learning behavior in early adrenalectomized rats. Physiology and Behavior, 1988, 44, 373-381.                                                                                                                       | 2.1 | 13        |
| 139 | Platelet MAO activity and psychosis proneness in college students. Psychiatry Research, 1987, 20, 129-142.                                                                                                               | 3.3 | 15        |
| 140 | Prevention of adrenalectomy-induced brain growth stimulation by corticosterone treatment.<br>Physiology and Behavior, 1987, 41, 391-395.                                                                                 | 2.1 | 19        |
| 141 | Divergent effects of early hydrocortisone treatment on behavioral and brain development in meadow and pine voles. Developmental Psychobiology, 1986, 19, 521-535.                                                        | 1.6 | 7         |
| 142 | A comparison between chlordiazepoxide and CL 218,872, a synthetic non-benzodiazepine ligand for<br>benzodiazepine receptors, on serotonin and catecholamine turnover in brain. Psychopharmacology,<br>1986, 88, 105-108. | 3.1 | 16        |
| 143 | Adrenalectomy in the developing rat: Does it cause reduced or increased brain myelination?.<br>Developmental Psychobiology, 1985, 18, 349-354.                                                                           | 1.6 | 7         |
| 144 | Normal development of brain enolase isozymes in adrenalectomized rats. Brain Research, 1985, 348,<br>155-158.                                                                                                            | 2.2 | 2         |

| #   | Article                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Early adrenalectomy increases myelin content of the rat brain. Developmental Brain Research, 1985, 17,<br>1-9.                                                                   | 1.7 | 58        |
| 146 | Early adrenalectomy stimulates subsequent growth and development of the rat brain. Experimental Neurology, 1983, 82, 432-446.                                                    | 4.1 | 122       |
| 147 | Effect of glucocorticoids on galactosylceramide sulfotransferase activity in rat brain. Brain<br>Research, 1982, 252, 192-196.                                                   | 2.2 | 1         |
| 148 | Effect of methaqualone on plasma corticosterone in rats: Possible sites of action. Pharmacology<br>Biochemistry and Behavior, 1982, 16, 925-927.                                 | 2.9 | 3         |
| 149 | Evidence for Glucocorticoid Target Cells in the Rat Optic Nerve. Hormone Binding and<br>Glycerolphosphate Dehydrogenase Induction. Journal of Neurochemistry, 1982, 39, 423-434. | 3.9 | 45        |
| 150 | Evidence for Glucocorticoid Target Cells in the Rat Optic Nerve. Physicochemical Characterization of Cytosol Binding Sites. Journal of Neurochemistry, 1982, 39, 435-442.        | 3.9 | 24        |
| 151 | Effects of corticosterone replacement on the temporal patterning of activity and sleep in adrenalectomized rats. Brain Research, 1980, 200, 206-212.                             | 2.2 | 36        |
| 152 | Subcutaneous implantation method for chronic glucocorticoid replacement therapy. Physiology and Behavior, 1979, 22, 867-870.                                                     | 2.1 | 181       |
| 153 | Glucocorticoids and hippocampal enzyme activity. Brain Research, 1979, 166, 172-175.                                                                                             | 2.2 | 26        |
| 154 | The effects of methaqualone on the seizure susceptibility of mice. Psychopharmacology, 1977, 54, 45-49.                                                                          | 3.1 | 6         |
| 155 | The effects of methaqualone on pituitary-adrenocortical activity in mice. Psychopharmacology, 1977, 54, 51-55.                                                                   | 3.1 | 3         |
| 156 | Behavioral and hormonal effects of attachment object separation in surrogate-peer-reared and mother-reared infant rhesus monkeys. Developmental Psychobiology, 1975, 8, 425-435. | 1.6 | 86        |
| 157 | Rearing experience, stress and adrenocorticosteroids in the rhesus monkey. Physiology and Behavior, 1972, 8, 339-343.                                                            | 2.1 | 60        |