Yan Suffren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/640542/publications.pdf Version: 2024-02-01

VAN SHEEDEN

#	Article	IF	CITATIONS
1	Microwave-assisted synthesis of lanthanide coordination polymers with 2-bromobenzoic acid as ligand from hexa-lanthanide molecular precursors. Journal of Molecular Structure, 2022, 1250, 131918.	3.6	2
2	Mono-, Di-, and Tetranuclear Manganese(II) Complexes with <i>p</i> -Phenylsulfonylcalix[4]arene Macrocycles as Ligand Antennas: Synthesis, Structures, and Emission Properties. Crystal Growth and Design, 2022, 22, 2279-2288.	3.0	1
3	Synthesis, Crystal Structure, and Luminescence Properties of the Iso-Reticular Series of Lanthanide Coordination Polymers Synthesized from Hexa-Lanthanide Molecular Precursors. Inorganic Chemistry, 2022, 61, 4895-4908.	4.0	3
4	Lanthanide-based molecular alloys with hydroxyterephthalate: a versatile system. CrystEngComm, 2021, 23, 100-118.	2.6	6
5	A new praseodymium-based coordination polymers with 1,10-phenantroline and glutarate ligands: Synthesis, crystal structure and luminescent properties. Journal of Molecular Structure, 2021, 1225, 129164.	3.6	3
6	Intercalation of a manganese(<scp>ii</scp>)-thiacalixarene luminescent complex in layered double hydroxides: synthesis and photophysical characterization. New Journal of Chemistry, 2021, 45, 343-350.	2.8	4
7	A Journey in Lanthanide Coordination Chemistry: From Evaporable Dimers to Magnetic Materials and Luminescent Devices. Accounts of Chemical Research, 2021, 54, 427-440.	15.6	54
8	Colloidal suspensions of highly luminescent lanthanide-based coordination polymer molecular alloys for ink-jet printing and tagging of technical liquids. Inorganic Chemistry Frontiers, 2021, 8, 2125-2135.	6.0	9
9	Highly Luminescent Europium-Based Heteroleptic Coordination Polymers with Phenantroline and Glutarate Ligands. Inorganic Chemistry, 2021, 60, 3707-3718.	4.0	22
10	Synthesis and photoluminescence properties of Mn2+ doped Ca1-xSrxCN2 phosphors prepared by a carbon nitride based route. Journal of Solid State Chemistry, 2021, 300, 122240.	2.9	8
11	Synthesis and photoluminescence properties of Mn2+ doped ZnCN2 phosphors. Open Ceramics, 2021, 7, 100157.	2.0	2
12	New lanthanide-based coordination polymers with 2,5-dihydroxyterephthalate. Inorganica Chimica Acta, 2021, 527, 120594.	2.4	5
13	Single-chain magnet behavior in a finite linear hexanuclear molecule. Chemical Science, 2021, 12, 10613-10621.	7.4	7
14	Hexanuclear Molecular Precursors as Tools to Design Luminescent Coordination Polymers with Lanthanide Segregation. Inorganic Chemistry, 2021, 60, 16782-16793.	4.0	5
15	Chiral Supramolecular Nanotubes of Singleâ€Chain Magnets. Angewandte Chemie, 2020, 132, 790-794.	2.0	7
16	Chiral Supramolecular Nanotubes of Single hain Magnets. Angewandte Chemie - International Edition, 2020, 59, 780-784.	13.8	36
17	Effect of cationic substitutions on the photoluminescence properties of Eu2+ doped SrCN2 prepared by a facile C3N4 based synthetic approach. Journal of the European Ceramic Society, 2020, 40, 6316-6321.	5.7	4
18	Luminescence properties of lanthanide complexes-based molecular alloys. Inorganica Chimica Acta, 2020, 501, 119309.	2.4	10

YAN SUFFREN

#	Article	IF	CITATIONS
19	Rational Design of Dual IR and Visible Highly Luminescent Light-Lanthanides-Based Coordination Polymers. Inorganic Chemistry, 2020, 59, 10673-10687.	4.0	21
20	High Luminance of Heterolanthanide-Based Molecular Alloys by Phase-Induction Strategy. Inorganic Chemistry, 2020, 59, 11028-11040.	4.0	11
21	Sonocrystallization as an Efficient Way to Control the Size, Morphology, and Purity of Coordination Compound Microcrystallites: Application to a Single-Chain Magnet. Inorganic Chemistry, 2020, 59, 9215-9226.	4.0	11
22	Evidence of reaction intermediates in microwave-assisted synthesis of SHG active α-La(IO ₃) ₃ nanocrystals. CrystEngComm, 2020, 22, 2517-2525.	2.6	4
23	A new series of lanthanide-based complexes with a bis(hydroxy)benzoxaborolone ligand: synthesis, crystal structure, and magnetic and optical properties. CrystEngComm, 2020, 22, 2020-2030.	2.6	6
24	Hetero-hexalanthanide Complexes: A New Synthetic Strategy for Molecular Thermometric Probes. Inorganic Chemistry, 2019, 58, 16180-16193.	4.0	12
25	A new family of lanthanide-based coordination polymers with azoxybenzene-3,3′,5,5′-tetracarboxylic acid as ligand. Inorganica Chimica Acta, 2019, 488, 208-213.	2.4	4
26	Multi-Emissive Lanthanide-Based Coordination Polymers for Potential Application as Luminescent Bar-Codes. Inorganic Chemistry, 2019, 58, 2659-2668.	4.0	43
27	Self-assembly of a terbium(III) 1D coordination polymer on mica. Beilstein Journal of Nanotechnology, 2019, 10, 2440-2448.	2.8	3
28	A supramolecular chain of dimeric Dy single molecule magnets decorated with azobenzene ligands. Dalton Transactions, 2019, 48, 16053-16061.	3.3	10
29	Microcrystalline Core–Shell Lanthanide-Based Coordination Polymers for Unprecedented Luminescent Properties. Inorganic Chemistry, 2019, 58, 1317-1329.	4.0	18
30	Photogeneration of Manganese(III) from Luminescent Manganese(II) Complexes with Thiacalixarene Ligands: Synthesis, Structures and Photophysical Properties. European Journal of Inorganic Chemistry, 2019, 2019, 73-78.	2.0	8
31	Lanthanide-Based Coordination Polymers With 1,4-Carboxyphenylboronic Ligand: Multiemissive Compounds for Multisensitive Luminescent Thermometric Probes. Inorganic Chemistry, 2019, 58, 462-475.	4.0	40
32	Structural diversity and photo-physical and magnetic properties of dimeric to 1D polymeric coordination polymers of lighter lanthanide(<scp>iii</scp>) dinitrobenzoates. Dalton Transactions, 2018, 47, 4722-4732.	3.3	22
33	Lanthanide-Based Coordination Polymers with a 4,5-Dichlorophthalate Ligand Exhibiting Highly Tunable Luminescence: Toward Luminescent Bar Codes. Inorganic Chemistry, 2018, 57, 3399-3410.	4.0	61
34	Closing the Circle of the Lanthanide-Murexide Series: Single-Molecule Magnet Behavior and Near-Infrared Emission of the NdIII Derivative. Magnetochemistry, 2018, 4, 44.	2.4	9
35	Thermodynamic Programming of Erbium(III) Coordination Complexes for Dual Visible/Nearâ€Infrared Luminescence. Chemistry - A European Journal, 2018, 24, 13158-13169.	3.3	25
36	Strong Magnetic Coupling and Single-Molecule-Magnet Behavior in Lanthanide-TEMPO Radical Chains. Inorganic Chemistry, 2018, 57, 11044-11057.	4.0	22

YAN SUFFREN

#	Article	IF	CITATIONS
37	Lanthanide coordination polymers with 1,2-phenylenediacetate. Inorganica Chimica Acta, 2017, 461, 136-144.	2.4	3
38	High Brightness and Easy Color Modulation in Lanthanide-Based Coordination Polymers with 5-Methoxyisophthalate as Ligand: Toward Emission Colors Additive Strategy. Crystal Growth and Design, 2017, 17, 1224-1234.	3.0	28
39	[Pt(SCN)4]2Based Coordination Polymers and Supramolecular Squares: Intermolecular Pt···H-C Interactions Probed by Luminescence Spectroscopy at Variable Pressure. European Journal of Inorganic Chemistry, 2017, 2017, 2864-2864.	2.0	1
40	Photo-physical properties of donor-acceptor-radical triad based on functionalized tetrathiafulvalene and nitronyl nitroxide radical. Dyes and Pigments, 2017, 145, 285-293.	3.7	7
41	[Pt(SCN) ₄] ^{2–} â€Based Coordination Polymers and Supramolecular Squares: Intermolecular Pt··H–C Interactions Probed by Luminescence Spectroscopy at Variable Pressure. European Journal of Inorganic Chemistry, 2017, 2017, 2865-2875.	2.0	4
42	Lanthanide-based hexa-nuclear complexes and their use as molecular precursors. Coordination Chemistry Reviews, 2017, 340, 134-153.	18.8	41
43	Hexalanthanide Complexes as Molecular Precursors: Synthesis, Crystal Structure, and Luminescent and Magnetic Properties. Inorganic Chemistry, 2017, 56, 14632-14642.	4.0	15
44	Taming Lanthanide-Centered Upconversion at the Molecular Level. Inorganic Chemistry, 2016, 55, 9964-9972.	4.0	53
45	Room Temperature Magnetic Switchability Assisted by Hysteretic Valence Tautomerism in a Layered Two-Dimensional Manganese-Radical Coordination Framework. Journal of the American Chemical Society, 2016, 138, 16493-16501.	13.7	43
46	Differences and Similarities between Lanthanum and Rare-Earth Iodate Anhydrous Polymorphs: Structures, Thermal Behaviors, and Luminescent Properties. Inorganic Chemistry, 2016, 55, 11264-11272.	4.0	8
47	Structures, Thermal Behaviors, and Luminescent Properties of Anhydrous Lanthanum Iodate Polymorphs. Inorganic Chemistry, 2015, 54, 3608-3618.	4.0	24
48	Discrete polynuclear manganese(<scp>ii</scp>) complexes with thiacalixarene ligands: synthesis, structures and photophysical properties. Dalton Transactions, 2015, 44, 7991-8000.	3.3	35
49	Smaller than a nanoparticle with the design of discrete polynuclear molecular complexes displaying near-infrared to visible upconversion. Dalton Transactions, 2015, 44, 2529-2540.	3.3	49
50	Tunable Trimers: Using Temperature and Pressure to Control Luminescent Emission in Gold(I) Pyrazolateâ€Based Trimers. Chemistry - A European Journal, 2014, 20, 16933-16942.	3.3	24
51	Optical properties of Nd3+ and Yb3+-doped AgM(IO3)4 metal iodates: transparent host matrices for mid-IR lasers and nonlinear materials. Journal of Materials Chemistry C, 2014, 2, 2715-2723.	5.5	35
52	Terbium(III) and Yttrium(III) Complexes with Pyridine-Substituted Nitronyl Nitroxide Radical and Different β-Diketonate Ligands. Crystal Structures and Magnetic and Luminescence Properties. Inorganic Chemistry, 2014, 53, 9548-9560.	4.0	55
53	Near-Infrared to Visible Light-Upconversion in Molecules: From Dream to Reality. Journal of Physical Chemistry C, 2013, 117, 26957-26963.	3.1	55
54	First Evidence of a Phase Transition in a Highâ€Pressure Metal Iodate: Structural and Thermal Studies of AgIO ₃ Polymorphs. European Journal of Inorganic Chemistry, 2013, 2013, 3526-3532.	2.0	11

YAN SUFFREN

#	Article	IF	CITATIONS
55	Ligand-centered vibrational modes as a probe of molecular and electronic structure: Raman spectroscopy of cis-Fe(1,10-phenanthroline)2(NCS)2 and trans-Fe(pyridine)4(NCS)2 at variable temperature and pressure. Polyhedron, 2013, 52, 1081-1089.	2.2	10
56	Titanyl Iodate – A Promising Material for Infrared Nonlinear Optics Showing Structural Similarities with KTP. European Journal of Inorganic Chemistry, 2012, 2012, 4264-4267.	2.0	31
57	RAMAN SPECTROSCOPY OF TRANSITION METAL COMPLEXES: MOLECULAR VIBRATIONAL FREQUENCIES, PHASE TRANSITIONS, ISOMERS, AND ELECTRONIC STRUCTURE. Comments on Inorganic Chemistry, 2011, 32, 246-276.	5.2	47