List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6405341/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High efficient fog-water harvesting via spontaneous swallowing mechanism. Nano Energy, 2022, 96, 107076.	16.0	6
2	Underwater Fast Bubble Generating on Pitaya Thorn and Enhanced Biomimetic Gas Collection. Advanced Materials Interfaces, 2022, 9, .	3.7	2
3	Design of flexible multiâ€level topography for enhancing mechanical property. Nano Select, 2021, 2, 541-548.	3.7	12
4	Recent advances in biomimetic fog harvesting: focusing on higher efficiency and large-scale fabrication. Molecular Systems Design and Engineering, 2021, 6, 986-996.	3.4	15
5	Excellent fog harvesting performance of liquid-infused nano-textured 3D frame. Chemical Engineering Journal, 2021, 409, 128180.	12.7	27
6	Electromigration-triggered programmable droplet spreading. Chemical Engineering Journal, 2021, 423, 130281.	12.7	4
7	Enhanced Fog Harvesting through Capillary-Assisted Rapid Transport of Droplet Confined in the Given Microchannel. ACS Applied Materials & Interfaces, 2021, 13, 48292-48300.	8.0	13
8	Water Harvesting of Bioinspired Microfibers with Rough Spindleâ€Knots from Microfluidics. Small, 2020, 16, e1901819.	10.0	45
9	Fog Collection on a Bio-inspired Topological Alloy Net with Micro-/Nanostructures. ACS Applied Materials & Interfaces, 2020, 12, 5065-5072.	8.0	37
10	Extremely Iceâ€Detached Array of Pine Needleâ€Inspired Concaveâ€Cone Pillars. Advanced Materials Interfaces, 2020, 7, 1901714.	3.7	1
11	Droplet Selfâ€Propelling Control on Bioinspired Fiber in Low Temperature and High Humidity Environment. Advanced Materials Interfaces, 2020, 7, 1901183.	3.7	5
12	Elastic Microstaggered Porous Superhydrophilic Framework as a Robust Fogwater Harvester. ACS Applied Materials & Interfaces, 2020, 12, 48049-48056.	8.0	9
13	Bioinspired Nanofibril-Humped Fibers with Strong Capillary Channels for Fog Capture. ACS Applied Materials & Interfaces, 2020, 12, 28876-28884.	8.0	34
14	Continuous Directional Water Transport on Integrating Tapered Surfaces. Advanced Materials Interfaces, 2020, 7, 2000081.	3.7	32
15	Droplet Manipulation: Magically Cut Apart Microdroplet by Smart Nanofibrils Wire. Advanced Materials Interfaces, 2020, 7, 2000161.	3.7	5
16	Bioinspired functions. , 2019, , 147-246.		1
17	Antiicing Properties of Bioinspired Liquidâ€Infused Doubleâ€Layer Surface with Internal Wetting Transport Ability. Advanced Materials Interfaces, 2019, 6, 1900244.	3.7	9
18	Integrative Bioinspired Surface with Wettable Patterns and Gradient for Enhancement of Fog Collection. ACS Applied Materials & amp; Interfaces, 2019, 11, 10951-10958.	8.0	56

#	Article	IF	CITATIONS
19	Robust Icephobic Performance of Flexible Needles. ChemNanoMat, 2019, 5, 175-180.	2.8	9
20	Fog Harvesting of a Bioinspired Nanocone-Decorated 3D Fiber Network. ACS Applied Materials & Interfaces, 2019, 11, 4507-4513.	8.0	86
21	Magnetically Induced Low Adhesive Direction of Nano/Micropillar Arrays for Microdroplet Transport. Advanced Functional Materials, 2018, 28, 1800163.	14.9	128
22	An Integrative Mesh with Dual Wettable On–Off Switch ofÂWater/Oil. Advanced Materials Interfaces, 2018, 5, 1701193.	3.7	13
23	Wettability: An Integrative Mesh with Dual Wettable On-Off Switch ofÂWater/Oil (Adv. Mater.) Tj ETQq1 1 0.784	1314.rgBT	/Overlock 10
24	Tiltâ€Angle Pillar Arrays: Directional Droplet Spreading Transport Controlled on Tiltâ€Angle Pillar Arrays (Adv. Mater. Interfaces 22/2018). Advanced Materials Interfaces, 2018, 5, 1870108.	3.7	1
25	Coatings: Multilevel Nanoparticles Coatings with Excellent Liquid Repellency (Adv. Mater. Interfaces) Tj ETQq1 1	0.784314 3.7	rgBT /Overlo
26	Excellent Fogâ€Ðroplets Collector via Integrative Janus Membrane and Conical Spine with Micro/Nanostructures. Small, 2018, 14, e1801335.	10.0	108
27	Droplets Manipulated on Photothermal Organogel Surfaces. Advanced Functional Materials, 2018, 28, 1803072.	14.9	121
28	Directional Droplet Spreading Transport Controlled on Tiltâ€Angle Pillar Arrays. Advanced Materials Interfaces, 2018, 5, 1800962.	3.7	36
29	Multilevel Nanoparticles Coatings with Excellent Liquid Repellency. Advanced Materials Interfaces, 2018, 5, 1800405.	3.7	6
30	One-step fabricated wettable gradient surface for controlled directional underwater oil-droplet transport. RSC Advances, 2017, 7, 7885-7889.	3.6	8
31	Wettability gradient on the elytra in the aquatic beetle Cybister chinensis and its role in angular position of the beetle at water-air interface. Acta Biomaterialia, 2017, 51, 408-417.	8.3	15
32	Controlled transportation of droplets and higher fog collection efficiency on a multi-scale and multi-gradient copper wire. RSC Advances, 2017, 7, 29606-29610.	3.6	13
33	Controlled droplet transport to target on a high adhesion surface with multi-gradients. Scientific Reports, 2017, 7, 45687.	3.3	61
34	A Strategy of Antifogging: Air-Trapped Hollow Microsphere Nanocomposites. Chemistry of Materials, 2017, 29, 2899-2905.	6.7	31
35	Antiadhesion Organogel Materials: From Liquid to Solid. Advanced Materials, 2017, 29, 1703032.	21.0	70
36	Robust superhydrophobic coatings with micro- and nano-composite morphology. RSC Advances, 2017, 7, 44234-44238.	3.6	12

#	Article	IF	CITATIONS
37	Directional bouncing of droplets on oblique two-tier conical structures. RSC Advances, 2017, 7, 35771-35775.	3.6	20
38	Direct Imaging of Superwetting Behavior on Solid–Liquid–Vapor Triphase Interfaces. Advanced Materials, 2017, 29, 1703009.	21.0	10
39	Orientation-Induced Effects of Water Harvesting on Humps-on-Strings of Bioinspired Fibers. Scientific Reports, 2016, 6, 19978.	3.3	16
40	High-Efficiency Fog Collector: Water Unidirectional Transport on Heterogeneous Rough Conical Wires. ACS Nano, 2016, 10, 10681-10688.	14.6	179
41	Robust Antiâ€lcing Performance of a Flexible Superhydrophobic Surface. Advanced Materials, 2016, 28, 7729-7735.	21.0	453
42	Magnetic field-guided directional rebound of a droplet on a superhydrophobic flexible needle surface. Journal of Materials Chemistry A, 2016, 4, 18289-18293.	10.3	51
43	Coalescedâ€Droplets Transport to Apexes of Magneticâ€Flexible Coneâ€Spine Array. Advanced Materials Interfaces, 2016, 3, 1600145.	3.7	9
44	Bioinspired Structure Materials to Control Water-collecting Properties. Materials Today: Proceedings, 2016, 3, 696-702.	1.8	22
45	Highly Efficient Fog Collection Unit by Integrating Artificial Spider Silks. Advanced Materials Interfaces, 2016, 3, 1500831.	3.7	39
46	Effective directional self-gathering of drops on spine of cactus with splayed capillary arrays. Scientific Reports, 2015, 5, 17757.	3.3	51
47	Controlled Smart Anisotropic Unidirectional Spreading of Droplet on a Fibrous Surface. Advanced Materials, 2015, 27, 5057-5062.	21.0	90
48	Excellent Antiâ€lcing Abilities of Optimal Micropillar Arrays with Nanohairs. Advanced Materials Interfaces, 2015, 2, 1500352.	3.7	41
49	Wet-Induced Fabrication of Heterogeneous Hump-on-String Fibers. Materials, 2015, 8, 4249-4257.	2.9	1
50	Radial Wettable Gradient of Hot Surface to Control Droplets Movement in Directions. Scientific Reports, 2015, 5, 10067.	3.3	22
51	Controlling of Water Collection Ability by an Elasticityâ€Regulated Bioinspired Fiber. Macromolecular Rapid Communications, 2015, 36, 459-464.	3.9	20
52	Controlled droplet transport on a gradient adhesion surface. Chemical Communications, 2015, 51, 6010-6013.	4.1	19
53	Dynamic Magnetic Responsive Wall Array with Droplet Shedding-off Properties. Scientific Reports, 2015, 5, 11209.	3.3	28
54	Droplet Transport on a Nano―and Microstructured Surface with a Wettability Gradient in Lowâ€Temperature or Highâ€Humidity Environments. Advanced Materials Interfaces, 2015, 2, 1500040.	3.7	22

#	Article	IF	CITATIONS
55	Bio-inspired artificial cilia with magnetic dynamic properties. Frontiers of Materials Science, 2015, 9, 178-184.	2.2	10
56	Efficient Water Collection on Integrative Bioinspired Surfaces with Starâ€Shaped Wettability Patterns. Advanced Materials, 2014, 26, 5025-5030.	21.0	467
57	Directional Drop Transport Achieved on Highâ€Temperature Anisotropic Wetting Surfaces. Advanced Materials, 2014, 26, 6086-6091.	21.0	59
58	Wetting-controlled strategies: From theories to bio-inspiration. Journal of Colloid and Interface Science, 2014, 427, 2-14.	9.4	28
59	lce-phobic gummed tape with nano-cones on microspheres. Journal of Materials Chemistry A, 2014, 2, 3312.	10.3	51
60	Excellent bead-on-string silkworm silk with drop capturing abilities. Journal of Materials Chemistry A, 2014, 2, 1230-1234.	10.3	19
61	Directional size-triggered microdroplet target transport on gradient-step fibers. Journal of Materials Chemistry A, 2014, 2, 7156-7160.	10.3	38
62	Asymmetric Ratchet Effect for Directional Transport of Fog Drops on Static and Dynamic Butterfly Wings. ACS Nano, 2014, 8, 1321-1329.	14.6	148
63	Bioinspired wet-assembly fibers: from nanofragments to microhumps on string in mist. Journal of Materials Chemistry A, 2014, 2, 9465.	10.3	28
64	Water collection abilities of green bristlegrass bristle. RSC Advances, 2014, 4, 40837-40840.	3.6	35
65	Bioinspired micro-/nanostructure fibers with a water collecting property. Nanoscale, 2014, 6, 7703.	5.6	81
66	Antifogging and Icing-Delay Properties of Composite Micro- and Nanostructured Surfaces. ACS Applied Materials & Interfaces, 2014, 6, 3963-3968.	8.0	135
67	Controlled Directional Waterâ€Droplet Spreading on a Highâ€Adhesion Surface. Angewandte Chemie - International Edition, 2014, 53, 6163-6167.	13.8	55
68	Photo-controlled water gathering on bio-inspired fibers. Soft Matter, 2013, 9, 9294.	2.7	30
69	Water-assisted fabrication of porous bead-on-string fibers. Journal of Materials Chemistry A, 2013, 1, 8363.	10.3	25
70	Directional shedding-off of water on natural/bio-mimetic taper-ratchet array surfaces. Soft Matter, 2012, 8, 1770-1775.	2.7	62
71	Stronger water hanging ability and higher water collection efficiency of bioinspired fiber with multi-gradient and multi-scale spindle knots. Soft Matter, 2012, 8, 11236.	2.7	45
72	Bioinspired spindle-knotted fibers with a strong water-collecting ability from a humid environment. Soft Matter, 2012, 8, 11450.	2.7	46

#	Article	IF	CITATIONS
73	A multi-structural and multi-functional integrated fog collection system in cactus. Nature Communications, 2012, 3, 1247.	12.8	1,098
74	Water Collection Behavior and Hanging Ability of Bioinspired Fiber. Langmuir, 2012, 28, 4737-4743.	3.5	84
75	Icephobic/Antiâ€lcing Properties of Micro/Nanostructured Surfaces. Advanced Materials, 2012, 24, 2642-2648.	21.0	518
76	Functional Fibers with Unique Wettability Inspired by Spider Silks. Advanced Materials, 2012, 24, 2786-2791.	21.0	148
77	Functional Fibers: Functional Fibers with Unique Wettability Inspired by Spider Silks (Adv. Mater.) Tj ETQq1 1 0.78	4314 rgB1 21.0	[Overlock]
78	Bioinspired Electrospun Knotted Microfibers for Fog Harvesting. ChemPhysChem, 2012, 13, 1153-1156.	2.1	102
79	Multi-level micro-/nanostructures of butterfly wings adapt at low temperature to water repellency. Soft Matter, 2011, 7, 10569.	2.7	47
80	Janus interface materials: superhydrophobic air/solid interface and superoleophobic water/solid interface inspired by a lotus leaf. Soft Matter, 2011, 7, 5948.	2.7	203
81	Large cale Fabrication of Bioinspired Fibers for Directional Water Collection. Small, 2011, 7, 3429-3433.	10.0	119
82	Organic Nanowires: Organic Nanowire Crystals Combine Excellent Device Performance and Mechanical Flexibility (Small 2/2011). Small, 2011, 7, 162-162.	10.0	1
83	Bioinspired Fibers: Large-Scale Fabrication of Bioinspired Fibers for Directional Water Collection (Small 24/2011). Small, 2011, 7, 3428-3428.	10.0	2
84	Bioâ€inspired Heterostructured Beadâ€onâ€6tring Fibers That Respond to Environmental Wetting. Advanced Functional Materials, 2011, 21, 1398-1402.	14.9	114
85	Drug Delivery: Bio-inspired Heterostructured Bead-on-String Fibers That Respond to Environmental Wetting (Adv. Funct. Mater. 8/2011). Advanced Functional Materials, 2011, 21, 1330-1330.	14.9	1
86	Controlled Fabrication and Water Collection Ability of Bioinspired Artificial Spider Silks. Advanced Materials, 2011, 23, 3708-3711.	21.0	162
87	Controlling Water Capture of Bioinspired Fibers with Hump Structures. Advanced Materials, 2011, 23, 5486-5491.	21.0	100
88	Capillary adhesion of wetted cribellate spider capture silks for larger pearly hanging-drops. Soft Matter, 2011, 7, 9468.	2.7	31
89	Direction Controlled Driving of Tiny Water Drops on Bioinspired Artificial Spider Silks. Advanced Materials, 2010, 22, 5521-5525.	21.0	272
90	Directional water collection on wetted spider silk. Nature, 2010, 463, 640-643.	27.8	1,678

#	Article	IF	CITATIONS
91	Bioinspired Super-antiwetting Interfaces with Special Liquidâ^'Solid Adhesion. Accounts of Chemical Research, 2010, 43, 368-377.	15.6	575
92	Ratchet-induced anisotropic behavior of superparamagnetic microdroplet. Applied Physics Letters, 2009, 94, 144104.	3.3	30
93	How does the leaf margin make the lotus surface dry as the lotus leaf floats on water?. Soft Matter, 2008, 4, 2232.	2.7	80
94	Extreme "water repellency―on strong water-spreading surface without tilted degree actuation. Applied Physics Letters, 2008, 93, 094107.	3.3	12
95	Directional adhesion of superhydrophobic butterfly wings. Soft Matter, 2007, 3, 178-182.	2.7	1,020
96	Simple Fabrication of Full Color Colloidal Crystal Films with Tough Mechanical Strength. Macromolecular Chemistry and Physics, 2006, 207, 596-604.	2.2	232