Jun Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6404943/publications.pdf Version: 2024-02-01

516710 345221 1,337 50 16 36 h-index citations g-index papers 50 50 50 1263 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	More is Less: Domain-Specific Speech Recognition Microprocessor Using One-Dimensional Convolutional Recurrent Neural Network. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69, 1571-1582.	5.4	13
2	Proposal of Analog In-Memory Computing With Magnified Tunnel Magnetoresistance Ratio and Universal STT-MRAM Cell. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69, 1519-1531.	5.4	30
3	A Target-Separable BWN Inspired Speech Recognition Processor with Low-power Precision-adaptive Approximate Computing. , 2022, , .		1
4	A 510-nW Wake-Up Keyword-Spotting Chip Using Serial-FFT-Based MFCC and Binarized Depthwise Separable CNN in 28-nm CMOS. IEEE Journal of Solid-State Circuits, 2021, 56, 151-164.	5.4	42
5	Semi-Analytical Path Delay Variation Model With Adjacent Gates Decorrelation for Subthreshold Circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40, 931-944.	2.7	3
6	SCVR-Less Dynamic Voltage-Stacking Scheme for IoT MCU. IEEE Journal of Solid-State Circuits, 2021, , 1-1.	5.4	1
7	AdVLP: unsupervised visible light positioning by adversarial deep learning. Measurement Science and Technology, 2021, 32, 064003.	2.6	4
8	A survey of in-spin transfer torque MRAM computing. Science China Information Sciences, 2021, 64, 1.	4.3	22
9	A Time-Domain Binary CNN Engine With Error-Detection-Based Resilience in 28nm CMOS. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 3177-3181.	3.0	3
10	TIMAQ: A Time-Domain Computing-in-Memory-Based Processor Using Predictable Decomposed Convolution for Arbitrary Quantized DNNs. IEEE Journal of Solid-State Circuits, 2021, 56, 3021-3038.	5.4	9
11	FusionVLP: The Fusion of Photodiode and Camera for Visible Light Positioning. IEEE Transactions on Vehicular Technology, 2021, 70, 11796-11811.	6.3	8
12	AAD-KWS: a sub-ÂμW keyword spotting chip with a zero-cost, acoustic activity detector from a 170nW MFCC feature extractor in 28nm CMOS. , 2021, , .		3
13	Adversarial Domain Adaptation for Network-Based Visible Light Positioning Algorithm. Advances in Intelligent Systems and Computing, 2021, , 835-844.	0.6	0
14	A Design of Timing Speculation SRAM-Based L1 Caches With PVT Autotracking Under Near-Threshold Voltages. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29, 2197-2209.	3.1	1
15	Precision Adaptive MFCC Based on R2SDF-FFT and Approximate Computing for Low-Power Speech Keywords Recognition. IEEE Circuits and Systems Magazine, 2021, 21, 24-39.	2.3	23
16	AAD-KWS: a sub-\$mumathrm{W}\$ keyword spotting chip with a zero-cost, acoustic activity detector from a 170nW MFCC feature extractor in 28nm CMOS. , 2021, , .		0
17	Cryogenic In-MRAM Computing. , 2021, , .		3
18	An Efficient and Reliable Negative Margin Timing Error Detection for Neural Network Accelerator without Accuracy Loss in 28nm CMOS. , 2021, , .		2

Jun Yang

#	Article	IF	CITATIONS
19	Design of an ultra-low Power MFCC Feature Extraction Circuit with Embedded Speech Activity Detector. , 2021, , .		1
20	TS Cache: A Fast Cache With Timing-Speculation Mechanism Under Low Supply Voltages. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28, 252-262.	3.1	13
21	A Self-Timed Voltage-Mode Sensing Scheme With Successive Sensing and Checking for STT-MRAM. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 1602-1614.	5.4	29
22	TG-SPP: A One-Transmission-Gate Short-Path Padding for Wide-Voltage-Range Resilient Circuits in 28-nm CMOS. IEEE Journal of Solid-State Circuits, 2020, 55, 1422-1436.	5.4	24
23	FRF: Toward Warp-Scheduler Friendly STT-RAM/SRAM Fine-Grained Hybrid GPGPU Register File Design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 2396-2409.	2.7	2
24	A Bi-Directional, Zero-Latency Adaptive Clocking Circuit in a 28-nm Wide AVFS System. IEEE Journal of Solid-State Circuits, 2020, 55, 826-836.	5.4	15
25	A Wide-Voltage-Range Transition-Detector With In-Situ Timing-Error Detection and Correction Based on Pulsed-Latch Design in 28 nm CMOS. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 3933-3943.	5.4	5
26	Modeling and Designing of a PVT Auto-tracking Timing-speculative SRAM. , 2020, , .		3
27	A 22nm, 10.8 <i>μ</i> W/15.1 <i>μ</i> W Dual Computing Modes High Power-Performance-Area Efficiency Domained Background Noise Aware Keyword- Spotting Processor. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 4733-4746.	5.4	50
28	Bandwidth-Enhanced Oversampling Successive Approximation Readout Technique for Low-Noise Power-Efficient MEMS Capacitive Accelerometer. IEEE Journal of Solid-State Circuits, 2020, 55, 2529-2538.	5.4	24
29	Machine Learning Assisted Side-Channel-Attack Countermeasure and Its Application on a 28-nm AES Circuit. IEEE Journal of Solid-State Circuits, 2020, 55, 794-804.	5.4	13
30	MTJ-LRB: Proposal of MTJ-Based Loop Replica Bitline as MRAM Device-Circuit Interaction for PVT-Robust Sensing. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 3352-3356.	3.0	4
31	Addressing Failure and Aging Degradation in MRAM/MeRAM-on-FDSOI Integration. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66, 239-250.	5.4	10
32	The Integration of Photodiode and Camera for Visible Light Positioning by Using Fixed-Lag Ensemble Kalman Smoother. Remote Sensing, 2019, 11, 1387.	4.0	6
33	Visible Light Positioning and Navigation Using Noise Measurement and Mitigation. IEEE Transactions on Vehicular Technology, 2019, 68, 11094-11106.	6.3	21
34	Lowering the Hit Latencies of Low Voltage Caches Based on the Cross-Sensing Timing Speculation SRAM. IEEE Access, 2019, 7, 111649-111661.	4.2	7
35	Low Overhead and Fast Reaction Adaptive Clocking System for Voltage Droop Tolerance. Chinese Journal of Electronics, 2019, 28, 503-507.	1.5	1
36	A Wide-Voltage-Range Half-Path Timing Error-Detection System With a 9-Transistor Transition-Detector in 40-nm CMOS. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66, 2288-2297.	5.4	13

Jun Yang

#	Article	IF	CITATIONS
37	Low-Power Centimeter-Level Localization for Indoor Mobile Robots Based on Ensemble Kalman Smoother Using Received Signal Strength. IEEE Internet of Things Journal, 2019, 6, 6513-6522.	8.7	39
38	Voltage-Controlled Magnetic Anisotropy MeRAM Bit-Cell over Event Transient Effects. Journal of Low Power Electronics and Applications, 2019, 9, 15.	2.0	5
39	RRS cache. , 2019, , .		4
40	A Survey of Positioning Systems Using Visible LED Lights. IEEE Communications Surveys and Tutorials, 2018, 20, 1963-1988.	39.4	397
41	A Pervasive Integration Platform of Low-Cost MEMS Sensors and Wireless Signals for Indoor Localization. IEEE Internet of Things Journal, 2018, 5, 4616-4631.	8.7	52
42	Exploring Hybrid STT-MTJ/CMOS Energy Solution in Near-/Sub-Threshold Regime for IoT Applications. IEEE Transactions on Magnetics, 2018, 54, 1-9.	2.1	18
43	A Low Overhead, Within-a-Cycle Adaptive Clock Stretching Circuit With Wide Operating Range in 40-nm CMOS. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65, 1718-1722.	3.0	4
44	HTD: A Light-Weight Holosymmetrical Transition Detector for Wide-Voltage-Range Variation Resilient ICs. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65, 3907-3917.	5.4	6
45	Timing Error Prediction AVFS With Detection Window Tuning for Wide-Operating-Range ICs. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65, 933-937.	3.0	12
46	A Double Sensing Scheme With Selective Bitline Voltage Regulation for Ultralow-Voltage Timing Speculative SRAM. IEEE Journal of Solid-State Circuits, 2018, 53, 2415-2426.	5.4	19
47	<i>In-Situ</i> Timing Monitor-Based Adaptive Voltage Scaling System for Wide-Voltage-Range Applications. IEEE Access, 2017, 5, 15831-15838.	4.2	11
48	Machine learning based sideâ€channelâ€attack countermeasure with hammingâ€distance redistribution and its application on advanced encryption standard. Electronics Letters, 2017, 53, 926-928.	1.0	23
49	Analytical inverter chain's delay and its variation model for sub-threshold circuits. IEICE Electronics Express, 2017, 14, 20170390-20170390.	0.8	4
50	Smartphone-Based Indoor Localization with Bluetooth Low Energy Beacons. Sensors, 2016, 16, 596.	3.8	334