Zhang-Wen Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6404563/publications.pdf

Version: 2024-02-01

ZHANG MEN MEL

#	Article	IF	CITATIONS
1	High Water Adsorption MOFs with Optimized Poreâ€Nanospaces for Autonomous Indoor Humidity Control and Pollutants Removal. Angewandte Chemie, 2022, 134, .	2.0	5
2	Enhancing Photocatalytic Hydrogen Production via the Construction of Robust Multivariate Tiâ€MOF/COF Composites. Angewandte Chemie, 2022, 134, .	2.0	15
3	Enhancing Photocatalytic Hydrogen Production via the Construction of Robust Multivariate Tiâ€MOF/COF Composites. Angewandte Chemie - International Edition, 2022, 61, .	13.8	67
4	High Water Adsorption MOFs with Optimized Poreâ€Nanospaces for Autonomous Indoor Humidity Control and Pollutants Removal. Angewandte Chemie - International Edition, 2022, 61, .	13.8	42
5	A Rare Flexible Metal–Organic Framework Based on a Tailorable Mn ₈ â€Cluster Showing Smart Responsiveness to Aromatic Guests and Capacity for Gas Separation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	20
6	A Rare Flexible Metal–Organic Framework Based on a Tailorable Mn ₈ â€Cluster Showing Smart Responsiveness to Aromatic Guests and Capacity for Gas Separation. Angewandte Chemie, 2022, 134, .	2.0	2
7	Innenrücktitelbild: Enhancing Photocatalytic Hydrogen Production via the Construction of Robust Multivariate Tiâ€MOF/COF Composites (Angew. Chem. 3/2022). Angewandte Chemie, 2022, 134, .	2.0	0
8	Pore-Nanospace Engineering of Mixed-Ligand Metal–Organic Frameworks for High Adsorption of Hydrofluorocarbons and Hydrochlorofluorocarbons. Chemistry of Materials, 2022, 34, 5116-5124.	6.7	11
9	Nitro-Decorated Microporous Covalent Organic Framework (TpPa-NO ₂) for Selective Separation of C ₂ H ₄ from a C ₂ H ₂ /C ₂ H ₄ /CO ₂ Mixture and CO ₂ Capture, ACS Applied Materials & amp: Interfaces, 2022, 14, 32105-32111.	8.0	22
10	Lanthanide Supermolecular Transformers Induced by K ⁺ and CO ₂ . Inorganic Chemistry, 2021, 60, 2764-2770.	4.0	7
11	Nanospace Engineering of Metal–Organic Frameworks through Dynamic Spacer Installation of Multifunctionalities for Efficient Separation of Ethane from Ethane/Ethylene Mixtures. Angewandte Chemie, 2021, 133, 9766-9771.	2.0	9
12	Nanospace Engineering of Metal–Organic Frameworks through Dynamic Spacer Installation of Multifunctionalities for Efficient Separation of Ethane from Ethane/Ethylene Mixtures. Angewandte Chemie - International Edition, 2021, 60, 9680-9685.	13.8	89
13	Flexible Microporous Copper(II) Metal–Organic Framework toward the Storage and Separation of C1–C3 Hydrocarbons in Natural Gas. Inorganic Chemistry, 2021, 60, 8456-8460.	4.0	21
14	A Series of Functionalized Zirconium Metal–Organic Cages for Efficient CO ₂ /N ₂ Separation. Inorganic Chemistry, 2021, 60, 17440-17444.	4.0	15
15	A novel Co-O cluster based coordination polymer for efficient hydrogen production photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 387, 112137.	3.9	8
16	Breathing-Ignited Long Persistent Luminescence in a Resilient Metal–Organic Framework. Chemistry of Materials, 2020, 32, 841-848.	6.7	87
17	A Flexible–Robust Copper(II) Metal–Organic Framework Constructed from a Fluorinated Ligand for CO ₂ /R22 Capture. Inorganic Chemistry, 2020, 59, 14856-14860.	4.0	14
18	Ultrafine Palladium Nanoparticles Stabilized in the Porous Liquid of Covalent Organic Cages for Photocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2020, 3, 12108-12114.	5.1	23

#	Article	IF	CITATIONS
19	Coordinative-to-covalent transformation, isomerization dynamics, and logic gate application of dithienylethene based photochromic cages. Chemical Science, 2020, 11, 8885-8894.	7.4	26
20	Dynamic Coordination Chemistry of Fluorinated Zrâ€MOFs: Synthetic Control and Reassembly/Disassembly Beyond de Novo Synthesis to Tune the Structure and Property. Chemistry - A European Journal, 2020, 26, 8254-8261.	3.3	16
21	A Porous and Stable Porphyrin Metalâ€Organic Framework as an Efficient Catalyst towards Visibleâ€Lightâ€Mediated Aerobic Crossâ€Dehydrogenativeâ€Coupling Reactions. Chemistry - an Asian Journal, 2020, 15, 1118-1124.	3.3	15
22	Ultrathin Graphitic Carbon Nitride Nanosheets for Photocatalytic Hydrogen Evolution. ACS Applied Nano Materials, 2020, 3, 1010-1018.	5.0	82
23	Confinement of a Au–N-heterocyclic carbene in a Pd ₆ L ₁₂ metal–organic cage. RSC Advances, 2020, 10, 39323-39327.	3.6	4
24	All Roads Lead to Rome: Tuning the Luminescence of a Breathing Catenated Zr-MOF by Programmable Multiplexing Pathways. Chemistry of Materials, 2019, 31, 5550-5557.	6.7	30
25	Pressureâ€Induced Multiphoton Excited Fluorochromic Metal–Organic Frameworks for Improving MPEF Properties. Angewandte Chemie, 2019, 131, 14517-14523.	2.0	12
26	Pressureâ€Induced Multiphoton Excited Fluorochromic Metal–Organic Frameworks for Improving MPEF Properties. Angewandte Chemie - International Edition, 2019, 58, 14379-14385.	13.8	53
27	Selfâ€Generation of Surface Roughness by Lowâ€Surfaceâ€Energy Alkyl Chains for Highly Stable Superhydrophobic/Superoleophilic MOFs with Multiple Functionalities. Angewandte Chemie - International Edition, 2019, 58, 17033-17040.	13.8	71
28	Selfâ€Generation of Surface Roughness by Lowâ€Surfaceâ€Energy Alkyl Chains for Highly Stable Superhydrophobic/Superoleophilic MOFs with Multiple Functionalities. Angewandte Chemie, 2019, 131, 17189-17196.	2.0	21
29	Embedding CoO nanoparticles in a yolk–shell N-doped porous carbon support for ultrahigh and stable lithium storage. Journal of Materials Chemistry A, 2019, 7, 4036-4046.	10.3	46
30	Tuning colorful luminescence of iridium(III) complexes from blue to near infrared. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 379, 99-104.	3.9	13
31	Structural tuning of coordination polymers by 4-connecting metal node and secondary building process. Chinese Chemical Letters, 2019, 30, 1297-1301.	9.0	1
32	Unusual adsorption behaviours and responsive structural dynamics <i>via</i> selective gate effects of an hourglass porous metal–organic framework. RSC Advances, 2019, 9, 37222-37231.	3.6	3
33	A Flexible Cu-MOF as Crystalline Sponge for Guests Determination. Inorganic Chemistry, 2019, 58, 61-64.	4.0	22
34	A Metal–Organic Supramolecular Box as a Universal Reservoir of UV, WL, and NIR Light for Longâ€Persistent Luminescence. Angewandte Chemie - International Edition, 2019, 58, 3481-3485.	13.8	99
35	A Metal–Organic Supramolecular Box as a Universal Reservoir of UV, WL, and NIR Light for Longâ€Persistent Luminescence. Angewandte Chemie, 2019, 131, 3519-3523.	2.0	25
36	Catalysis through Dynamic Spacer Installation of Multivariate Functionalities in Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 2589-2593.	13.7	98

#	Article	IF	CITATIONS
37	Metal Effects on the Framework Stability and Adsorption Property of a Series of Isoreticular Metal–Organic Frameworks Based on an in-Situ Generated T-Shaped Ligand. Crystal Growth and Design, 2019, 19, 300-304.	3.0	8
38	Framework disorder and its effect on selective hysteretic sorption of a T-shaped azole-based metal–organic framework. IUCrJ, 2019, 6, 85-95.	2.2	10
39	A porous rhodium(III)-porphyrin metal-organic framework as an efficient and selective photocatalyst for CO2 reduction. Applied Catalysis B: Environmental, 2018, 231, 173-181.	20.2	126
40	Elucidating Anionâ€Dependent Formation and Conversion of Pd ₂ L ₄ and Pd ₃ L ₆ Metal–Organic Cages by Complementary Techniques. European Journal of Inorganic Chemistry, 2018, 2018, 80-85.	2.0	20
41	Tunability of fluorescent metal–organic frameworks through dynamic spacer installation with multivariate fluorophores. Chemical Communications, 2018, 54, 13666-13669.	4.1	22
42	Design and Enantioresolution of Homochiral Fe(II)–Pd(II) Coordination Cages from Stereolabile Metalloligands: Stereochemical Stability and Enantioselective Separation. Journal of the American Chemical Society, 2018, 140, 18183-18191.	13.7	102
43	Visualization of Anisotropic and Stepwise Piezofluorochromism in an MOF Single Crystal. CheM, 2018, 4, 2658-2669.	11.7	65
44	Modulating Electronic Structure of Metalâ€Organic Framework for Efficient Electrocatalytic Oxygen Evolution. Advanced Energy Materials, 2018, 8, 1801564.	19.5	240
45	Hierarchically Porous Single Nanocrystals of Bimetallic Metal–Organic Framework for Nanoreactors with Enhanced Conversion. Chemistry of Materials, 2018, 30, 6458-6468.	6.7	24
46	Solventâ€Induced and Temperatureâ€Promoted Aggregation of Bipyridine Platinum(II) Triangular Metallacycles and Their Nearâ€Infrared Emissive Behaviors. Chemistry - A European Journal, 2018, 24, 11611-11618.	3.3	20
47	A stable metal cluster-metalloporphyrin MOF with high capacity for cationic dye removal. Journal of Materials Chemistry A, 2018, 6, 17698-17705.	10.3	102
48	Nanosized NIR‣uminescent Ln Metal–Organic Cage for Picric Acid Sensing. European Journal of Inorganic Chemistry, 2017, 2017, 646-650.	2.0	32
49	A Robust Metal–Organic Framework Combining Open Metal Sites and Polar Groups for Methane Purification and CO ₂ /Fluorocarbon Capture. Chemistry - A European Journal, 2017, 23, 4060-4064.	3.3	62
50	Dynamic Spacer Installation for Multirole Metal–Organic Frameworks: A New Direction toward Multifunctional MOFs Achieving Ultrahigh Methane Storage Working Capacity. Journal of the American Chemical Society, 2017, 139, 6034-6037.	13.7	168
51	Diverse binding of important anions in 1-D tricopper anion coordination polymer (ACP) architectures. CrystEngComm, 2017, 19, 2349-2358.	2.6	3
52	A Porous Zn(II)-Metal–Organic Framework Constructed from Fluorinated Ligands for Gas Adsorption. Crystal Growth and Design, 2017, 17, 1476-1479.	3.0	25
53	Stepwise engineering of pore environments and enhancement of CO ₂ /R22 adsorption capacity through dynamic spacer installation and functionality modification. Chemical Communications, 2017, 53, 11403-11406.	4.1	22
54	A zirconium metal–organic framework with an exceptionally high volumetric surface area. Dalton Transactions, 2017, 46, 14270-14276.	3.3	19

#	Article	IF	CITATIONS
55	Cage-opening supramolecular isomerism in Cu(II) complexes. Inorganic Chemistry Communication, 2017, 86, 223-226.	3.9	4
56	Ultrafast water sensing and thermal imaging by a metal-organic framework with switchable luminescence. Nature Communications, 2017, 8, 15985.	12.8	373
57	Engineering catalytic coordination space in a chemically stable Ir-porphyrin MOF with a confinement effect inverting conventional Si–H insertion chemoselectivity. Chemical Science, 2017, 8, 775-780.	7.4	82
58	An Efficient Visible and Nearâ€Infrared (NIR) Emitting Sm ^{III} Metal–Organic Framework (Smâ€MOF) Sensitized by Excitedâ€State Intramolecular Proton Transfer (ESIPT) Ligand. Chemistry - an Asian Journal, 2016, 11, 1765-1769.	3.3	60
59	Highly Efficient Visibleâ€ŧoâ€NIR Luminescence of Lanthanide(III) Complexes with Zwitterionic Ligands Bearing Chargeâ€Transfer Character: Beyond Triplet Sensitization. Chemistry - A European Journal, 2016, 22, 2440-2451.	3.3	109
60	Ligand and Metal Effects on the Stability and Adsorption Properties of an Isoreticular Series of MOFs Based on Tâ€Shaped Ligands and Paddleâ€Wheel Secondary Building Units. Chemistry - A European Journal, 2016, 22, 16147-16156.	3.3	43
61	Rigidifying Effect of Metal–Organic Frameworks: Protect the Conformation, Packing Mode, and Blue Fluorescence of a Soft Piezofluorochromic Compound under Pressures up to 8 MPa. Inorganic Chemistry, 2016, 55, 7311-7313.	4.0	37
62	Precise Modulation of the Breathing Behavior and Pore Surface in Zrâ€MOFs by Reversible Postâ€Synthetic Variableâ€Spacer Installation to Fineâ€Tune the Expansion Magnitude and Sorption Properties. Angewandte Chemie, 2016, 128, 10086-10090.	2.0	30
63	Precise Modulation of the Breathing Behavior and Pore Surface in Zrâ€MOFs by Reversible Postâ€Synthetic Variableâ€Spacer Installation to Fineâ€Tune the Expansion Magnitude and Sorption Properties. Angewandte Chemie - International Edition, 2016, 55, 9932-9936.	13.8	125
64	Solvent- and anion-induced interconversions of metal–organic cages. Chemical Communications, 2016, 52, 8745-8748.	4.1	31
65	Topology-guided design of an anionic bor-network for photocatalytic [Ru(bpy)3]2+ encapsulation. Chemical Communications, 2016, 52, 1926-1929.	4.1	62
66	A new TPE-based tetrapodal ligand and its Ln(<scp>iii</scp>) complexes: multi-stimuli responsive AIE (aggregation-induced emission)/ILCT(intraligand charge transfer)-bifunctional photoluminescence and NIR emission sensitization. Dalton Transactions, 2016, 45, 943-950.	3.3	67
67	Biological study of metal–organic frameworks towards human ovarian cancer cell lines. Canadian Journal of Chemistry, 2016, 94, 380-385.	1.1	2
68	Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation. Nature Communications, 2015, 6, 5979.	12.8	540
69	Piezofluorochromic Metal–Organic Framework: A Microscissor Lift. Journal of the American Chemical Society, 2015, 137, 10064-10067.	13.7	218
70	Topology-Guided Design and Syntheses of Highly Stable Mesoporous Porphyrinic Zirconium Metal–Organic Frameworks with High Surface Area. Journal of the American Chemical Society, 2015, 137, 413-419.	13.7	352
71	A Highly Stable Zeotype Mesoporous Zirconium Metal–Organic Framework with Ultralarge Pores. Angewandte Chemie - International Edition, 2015, 54, 149-154.	13.8	258
72	Kinetically tuned dimensional augmentation as a versatile synthetic route towards robust metal–organic frameworks. Nature Communications, 2014, 5, 5723.	12.8	332

#	Article	IF	CITATIONS
73	A Highly Stable Porphyrinic Zirconium Metal–Organic Framework with shp-a Topology. Journal of the American Chemical Society, 2014, 136, 17714-17717.	13.7	356
74	Rigidifying Fluorescent Linkers by Metal–Organic Framework Formation for Fluorescence Blue Shift and Quantum Yield Enhancement. Journal of the American Chemical Society, 2014, 136, 8269-8276.	13.7	531
75	Metal–Organic Frameworks as Biomimetic Catalysts. ChemCatChem, 2014, 6, 67-75.	3.7	259
76	Synthesis, Structure, and Fungicidal Activity of Organotin Dithiocarbamates Derived from Pyridinamines and Aryl Diamines. Heteroatom Chemistry, 2014, 25, 274-281.	0.7	10
77	Rational Design and Synthesis of Porous Polymer Networks: Toward High Surface Area. Chemistry of Materials, 2014, 26, 4589-4597.	6.7	66
78	Study of Guest Molecules in Metal–Organic Frameworks by Powder X-ray Diffraction: Analysis of Difference Envelope Density. Crystal Growth and Design, 2014, 14, 5397-5407.	3.0	94
79	Tuning the structure and function of metal–organic frameworks via linker design. Chemical Society Reviews, 2014, 43, 5561-5593.	38.1	1,792
80	Linker extension through hard-soft selective metal coordination for the construction of a non-rigid metal-organic framework. Science China Chemistry, 2013, 56, 418-422.	8.2	20
81	An Exceptionally Stable, Porphyrinic Zr Metal–Organic Framework Exhibiting pH-Dependent Fluorescence. Journal of the American Chemical Society, 2013, 135, 13934-13938.	13.7	646
82	Metal–Organic Frameworks Based on Previously Unknown Zr ₈ /Hf ₈ Cubic Clusters. Inorganic Chemistry, 2013, 52, 12661-12667.	4.0	197
83	Construction of Ultrastable Porphyrin Zr Metal–Organic Frameworks through Linker Elimination. Journal of the American Chemical Society, 2013, 135, 17105-17110.	13.7	880
84	A Route to Metal–Organic Frameworks through Framework Templating. Inorganic Chemistry, 2013, 52, 1164-1166.	4.0	83
85	Highly porous metal–organic framework sustained with 12-connected nanoscopic octahedra. Dalton Transactions, 2013, 42, 1708-1714.	3.3	61
86	Titelbild: Zirconium-Metalloporphyrin PCN-222: Mesoporous Metal-Organic Frameworks with Ultrahigh Stability as Biomimetic Catalysts (Angew. Chem. 41/2012). Angewandte Chemie, 2012, 124, 10343-10343.	2.0	3
87	Zirconiumâ€Metalloporphyrin PCNâ€222: Mesoporous Metal–Organic Frameworks with Ultrahigh Stability as Biomimetic Catalysts. Angewandte Chemie - International Edition, 2012, 51, 10307-10310.	13.8	1,555
88	Stepwise adsorption in a mesoporous metal–organic framework: experimental and computational analysis. Chemical Communications, 2012, 48, 3297.	4.1	60
89	Polyamineâ€Tethered Porous Polymer Networks for Carbon Dioxide Capture from Flue Gas. Angewandte Chemie - International Edition, 2012, 51, 7480-7484.	13.8	518