Alexander S Filatov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6404541/publications.pdf

Version: 2024-02-01

151 papers 4,973 citations

36 h-index 62 g-index

162 all docs 162 docs citations

times ranked

162

5116 citing authors

#	Article	IF	Citations
1	Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science, 2020, 369, 979-983.	12.6	870
2	A Main Group Metal Sandwich: Five Lithium Cations Jammed Between Two Corannulene Tetraanion Decks. Science, 2011, 333, 1008-1011.	12.6	210
3	Aromatic π-Systems More Curved Than C ₆₀ . The Complete Family of All Indenocorannulenes Synthesized by Iterative Microwave-Assisted Intramolecular Arylations. Journal of the American Chemical Society, 2009, 131, 10537-10545.	13.7	167
4	Probing the binding sites and coordination limits of buckybowls in a solvent-free environment: Experimental and theoretical assessment. Coordination Chemistry Reviews, 2010, 254, 2234-2246.	18.8	123
5	How Charging Corannulene with One and Two Electrons Affects Its Geometry and Aggregation with Sodium and Potassium Cations. Chemistry - A European Journal, 2012, 18, 6476-6484.	3.3	92
6	Selective <i>Endo</i> and <i>Exo</i> Binding of Alkali Metals to Corannulene. Angewandte Chemie - International Edition, 2011, 50, 8090-8094.	13.8	88
7	Ï€â^Ï€ Interactions and Solid State Packing Trends of Polycyclic Aromatic Bowls in the Indenocorannulene Family: Predicting Potentially Useful Bulk Properties. Crystal Growth and Design, 2010, 10, 4607-4621.	3.0	81
8	Tightening of the Nanobelt upon Multielectron Reduction. Angewandte Chemie - International Edition, 2013, 52, 5033-5036.	13.8	78
9	Isolation of a Terminal Co(III)-Oxo Complex. Journal of the American Chemical Society, 2018, 140, 13176-13180.	13.7	75
10	A new efficient ironcatalyst for olefinepoxidation with hydrogen peroxide. Chemical Communications, 2012, 48, 687-689.	4.1	70
11	Clamshell Opening in the Mixedâ€Metal Supramolecular Aggregates Formed by Fourfold Reduced Corannulene for Maximizing Intercalated Metal Content. Angewandte Chemie - International Edition, 2014, 53, 140-145.	13.8	67
12	Record Alkali Metal Intercalation by Highly Charged Corannulene. Accounts of Chemical Research, 2018, 51, 1541-1549.	15.6	67
13	Foregoing Rigidity to Achieve Greater Intimacy. Angewandte Chemie - International Edition, 2009, 48, 8473-8476.	13.8	61
14	Binary Transition-Metal Oxide Hollow Nanoparticles for Oxygen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2018, 10, 24715-24724.	8.0	60
15	A Strainâ€Releasing Trap for Highly Reactive Electrophiles: Structural Characterization of Bowlâ€Shaped Arenium Carbocations. Angewandte Chemie - International Edition, 2011, 50, 2971-2974.	13.8	56
16	Synthesis of Alternating Donor–Acceptor Ladderâ€Type Molecules and Investigation of Their Multiple Chargeâ€Transfer Pathways. Angewandte Chemie - International Edition, 2018, 57, 6442-6448.	13.8	54
17	Pentadecker Supramolecules with a Lithium Alkoxo Nanobelt Sandwiched between Two Highly Charged Buckybowl Surfaces. Angewandte Chemie - International Edition, 2012, 51, 12194-12198.	13.8	52
18	Bowl-Shaped Polyarenes as Concave–Convex Shape Complementary Hosts for C ₆₀ - and C ₇₀ -Fullerenes. Crystal Growth and Design, 2014, 14, 756-762.	3.0	52

#	Article	IF	CITATIONS
19	Preparation and Characterization of Alkenyl Aryl Tetrafluoroâ€î» ⁶ â€sulfanes. Angewandte Chemie - International Edition, 2014, 53, 526-529.	13.8	51
20	$H \cdot sub \cdot 2 \cdot / sub \cdot O \cdot sub \cdot 2 \cdot / sub \cdot activation with biomimetic non-haem iron complexes and AcOH: connecting the g = 2.7 EPR signal with a visible chromophore. Chemical Communications, 2014, 50, 645-648.$	4.1	51
21	Bicorannulenyl: Stereochemistry of a C ₄₀ H ₁₈ Biaryl Composed of Two Chiral Bowls. Journal of Organic Chemistry, 2008, 73, 6073-6078.	3.2	47
22	Electrocatalytic Proton Reduction by a Dicobalt Tetrakis-Schiff Base Macrocycle in Nonaqueous Electrolyte. Inorganic Chemistry, 2014, 53, 7137-7145.	4.0	47
23	Mono-N-protected amino acid ligands stabilize dimeric palladium(<scp>ii</scp>) complexes of importance to C–H functionalization. Chemical Science, 2017, 8, 5746-5756.	7.4	45
24	Jahn–Teller Effect in Circulenes: Xâ€ray Diffraction Study of Coronene and Corannulene Radical Anions. Chemistry - A European Journal, 2012, 18, 15753-15760.	3.3	43
25	Redox-Active 1D Coordination Polymers of Iron–Sulfur Clusters. Journal of the American Chemical Society, 2019, 141, 3940-3951.	13.7	43
26	Volatile Single-Source Molecular Precursor for the Lithium Ion Battery Cathode. Journal of the American Chemical Society, 2012, 134, 5762-5765.	13.7	42
27	Self-Assembly of Charged Supramolecular Sandwiches Formed by Corannulene Tetraanions and Lithium Cations. Organometallics, 2012, 31, 5541-5545.	2.3	42
28	From Solid State to Solution: Advancing Chemistry of Bi–Bi and Bi–Rh Paddlewheel Carboxylates. Inorganic Chemistry, 2012, 51, 566-571.	4.0	41
29	Experimental and Computational Studies of the Neutral and Reduced States of Indeno[1,2- <i>b</i>)fluorene. Journal of the American Chemical Society, 2014, 136, 9181-9189.	13.7	41
30	Colloidal Gelation in Liquid Metals Enables Functional Nanocomposites of 2D Metal Carbides (MXenes) and Lightweight Metals. ACS Nano, 2019, 13, 12415-12424.	14.6	41
31	Volatile Heterometallic Precursors for the Low-Temperature Synthesis of Prospective Sodium Ion Battery Cathode Materials. Journal of the American Chemical Society, 2013, 135, 12216-12219.	13.7	40
32	Molecular curvature tradeoffs: Bending a planar trimercury unit over bowl-shaped polyaromatic hydrocarbons. Journal of Organometallic Chemistry, 2011, 696, 2877-2881.	1.8	39
33	"Naked―Mono- and Dianions of Corannulene with Lithium Counterions. Organometallics, 2013, 32, 538-543.	2.3	39
34	Unligated Diruthenium(II,II) Tetra(trifluoroacetate):Â The First X-ray Structural Study, Thermal Compressibility, Lewis Acidity, and Magnetism. Inorganic Chemistry, 2006, 45, 744-751.	4.0	38
35	Synthesis, structure, and reactions of a copper–sulfido cluster comprised of the parent Cu ₂ S unit: {(NHC)Cu} ₂ (μ-S). Chemical Science, 2016, 7, 589-595.	7.4	37
36	Carbonate formation within a nickel dimer: synthesis of a coordinatively unsaturated bis ($\hat{1}$ /4-hydroxo) dinickel complex and its reactivity toward carbon dioxide. Dalton Transactions, 2010, 39, 2504.	3.3	36

#	Article	IF	CITATIONS
37	Increasing the Curvature of a Bowl-Shaped Polyarene by Fullerene-like î- ² -Complexation of a Transition Metal at the Interior of the Convex Surface. Organometallics, 2010, 29, 1231-1237.	2.3	36
38	Tuning Binding of Rubidium Ions to Planar and Curved Negatively Charged π Surfaces. Organometallics, 2013, 32, 3773-3779.	2.3	36
39	Self-assembly of tetrareduced corannulene with mixed Li–Rb clusters: dynamic transformations, unique structures and record ⁷ Li NMR shifts. Chemical Science, 2015, 6, 1959-1966.	7.4	36
40	Supramolecular trap for a transient corannulene trianion. Chemical Science, 2016, 7, 1954-1961.	7.4	36
41	Tuning the separation and coupling of corannulene trianion-radicals through sizable alkali metal belts. Chemical Science, 2017, 8, 3137-3145.	7.4	36
42	Structural diversity and photoluminescence of copper(I) carboxylates: From discrete complexes to infinite metal-based wires and helices. Coordination Chemistry Reviews, 2015, 295, 125-138.	18.8	34
43	Understanding and Curing Structural Defects in Colloidal GaAs Nanocrystals. Nano Letters, 2017, 17, 2094-2101.	9.1	34
44	Volatile Single-Source Precursors for the Low-Temperature Preparation of Sodium–Rare Earth Metal Fluorides. Journal of the American Chemical Society, 2016, 138, 8883-8887.	13.7	33
45	Gas-Phase Assembling of Dirhodium Units into a Novel Organometallic Ladder:  Structural and DFT Study. Crystal Growth and Design, 2006, 6, 1479-1484.	3.0	32
46	Nickel(II) Complexes of Monofunctionalized Pyridine-Azamacrocycles: Synthesis, Structures, Pendant Arm "On-Off―Coordination Equilibria, and Peroxidase-like Activity. Inorganic Chemistry, 2009, 48, 8456-8468.	4.0	32
47	Functionalized Corannulene Carbocations: A Structural Overview. Chemistry - A European Journal, 2015, 21, 14268-14279.	3.3	32
48	Monomeric Square-Planar Cobalt(II) Acetylacetonate: Mystery or Mistake?. Inorganic Chemistry, 2010, 49, 8430-8434.	4.0	31
49	Selective Surface Decoration of Corannulene. Journal of Organic Chemistry, 2011, 76, 9572-9576.	3.2	31
50	Dirhodium Paddlewheel with Functionalized Carboxylate Bridges: New Building Block for Self-Assembly and Immobilization on Solid Support. Inorganic Chemistry, 2012, 51, 4855-4861.	4.0	31
51	Radical Dimerization in a Plastic Organic Crystal Leads to Structural and Magnetic Bistability with Wide Thermal Hysteresis. Journal of the American Chemical Society, 2019, 141, 17989-17994.	13.7	31
52	Changing the bridging connectivity pattern within a heterometallic assembly: design of single-source precursors with discrete molecular structures. Chemical Science, 2014, 5, 813-818.	7.4	30
53	Self-assembly of charged corannulene with cesium ions: Always in the bowl. Journal of Organometallic Chemistry, 2015, 784, 69-74.	1.8	30
54	Reversible Switching of Organic Diradical Character via Iron-Based Spin-Crossover. Journal of the American Chemical Society, 2020, 142, 17670-17680.	13.7	30

#	Article	IF	CITATIONS
55	Reversible Cu4 â†" Cu6 Core Interconversion and Temperature Induced Single-Crystal-to-Single-Crystal Phase Transition for Copper(I) Carboxylate. Inorganic Chemistry, 2010, 49, 1626-1633.	4.0	28
56	Functionalized corannulene cations: a detailed theoretical survey. Physical Chemistry Chemical Physics, 2012, 14, 3554.	2.8	27
57	Bowlâ€shaped carbocations: easy to produce, hard to reduce. Journal of Physical Organic Chemistry, 2012, 25, 553-558.	1.9	27
58	Effects of substitution on the reactivity of alkyl aryl tetrafluoro-λ6-sulfanes. Journal of Fluorine Chemistry, 2014, 167, 192-197.	1.7	27
59	Double-Concave Binding of Bicorannulenyl Dianion: Cesium vs Lithium Salts. Organometallics, 2014, 33, 2874-2878.	2.3	27
60	Isolable iodosylarene and iodoxyarene adducts of Co and their O-atom transfer and C–H activation reactivity. Chemical Science, 2018, 9, 4493-4499.	7.4	26
61	Di-Palladium Complexes are Active Catalysts for Mono-N-Protected Amino Acid-Accelerated Enantioselective C–H Functionalization. ACS Catalysis, 2019, 9, 11386-11397.	11.2	26
62	Recyclable Dirhodium Catalysts Embedded in Nanoporous Surfaceâ€Functionalized Organosilica Hosts for Carbenoidâ€Mediated Cyclopropanation Reactions. ChemCatChem, 2010, 2, 1461-1466.	3.7	25
63	Reshaping Rubrene by Controlled Reduction with Alkali Metals. European Journal of Inorganic Chemistry, 2012, 2012, 4675-4683.	2.0	25
64	Paracyclophanes as Versatile π-Donor Ligands Directing Formation of Extended Organometallic Networks. Organometallics, 2006, 25, 2135-2142.	2.3	24
65	Intra-molecular Charge Transfer and Electron Delocalization in Non-fullerene Organic Solar Cells. ACS Applied Materials & Delocation (10043-10052).	8.0	24
66	Siteâ€Directed Dimerization of Bowlâ€Shaped Radical Anions to Form a Ïfâ€Bonded Dibenzocorannulene Dimer. Angewandte Chemie - International Edition, 2018, 57, 6171-6175.	13.8	24
67	Generation and Oxidative Reactivity of a Ni(II) Superoxo Complex via Ligand-Based Redox Non-Innocence. Journal of the American Chemical Society, 2020, 142, 10824-10832.	13.7	24
68	Heterometallic molecular precursors for a lithium–iron oxide material: synthesis, solid state structure, solution and gas-phase behaviour, and thermal decomposition. Dalton Transactions, 2017, 46, 5644-5649.	3.3	23
69	Corannulene vs. C60-fullerene in metal binding reactions: A direct DFT and X-ray structural comparison. Dalton Transactions, 2007, , 3871.	3.3	22
70	Mixed-valent, heteroleptic homometallic diketonates as templates for the design of volatile heterometallic precursors. Chemical Science, 2015, 6, 2835-2842.	7.4	22
71	Ligandâ€Based Storage of Protons and Electrons in Dihydrazonopyrrole Complexes of Nickel. Chemistry - A European Journal, 2018, 24, 8001-8008.	3.3	22
72	Redox, transmetalation, and stacking properties of tetrathiafulvalene-2,3,6,7-tetrathiolate bridged tin, nickel, and palladium compounds. Chemical Science, 2020, 11, 1066-1078.	7.4	22

#	Article	IF	CITATIONS
73	Route Optimization and Synthesis of Taxadienone. Organic Process Research and Development, 2015, 19, 284-289.	2.7	21
74	Low-Pressure Flow Chemistry of CuAAC Click Reaction Catalyzed by Nanoporous AuCu Membrane. ACS Applied Materials & Diterfaces, 2018, 10, 25930-25935.	8.0	20
75	Slow Magnetic Relaxation of Co(II) Single Chains Embedded within Metal–Organic Superstructures. Inorganic Chemistry, 2019, 58, 3764-3773.	4.0	20
76	Structural, Electrochemical, and Spectroscopic Investigation of Acetate Bridged Dinuclear Tetrakis-Schiff Base Macrocycles of Mn and Zn. Inorganic Chemistry, 2013, 52, 13963-13973.	4.0	19
77	Incorporation of Pyrazine and Bipyridine Linkers with High-Spin Fe(II) and Co(II) in a Metal–Organic Framework. Inorganic Chemistry, 2017, 56, 3349-3356.	4.0	19
78	Generation and Reactivity of a Ni ^{III} ₂ (Î $\frac{1}{4}$ -1,2-peroxo) Complex. Journal of the American Chemical Society, 2020, 142, 21634-21639.	13.7	19
79	Insulated copper(i) "wires― structural variations and photoluminescence. Chemical Communications, 2011, 47, 6939.	4.1	18
80	Addition of Dihalocarbenes to a π-Bowl: First Structural Study. Crystal Growth and Design, 2015, 15, 778-785.	3.0	18
81	Reversible homolytic activation of water <i>via</i> metal–ligand cooperativity in a T-shaped Ni(<scp>ii</scp>) complex. Chemical Science, 2019, 10, 1360-1367.	7.4	18
82	Mixed-Ligand Approach to Changing the Metal Ratio in Bismuth–Transition Metal Heterometallic Precursors. Inorganic Chemistry, 2016, 55, 3946-3951.	4.0	17
83	A stable rhodium single-site catalyst encapsulated within dendritic mesoporous nanochannels. Nanoscale, 2018, 10, 1047-1055.	5.6	17
84	Palladium π-adduct of corannulene. Journal of Organometallic Chemistry, 2011, 696, 1228-1231.	1.8	16
85	New Forms of CdSe: Molecular Wires, Gels, and Ordered Mesoporous Assemblies. Journal of the American Chemical Society, 2017, 139, 3368-3377.	13.7	16
86	Rhodium Complexes of 2,6-Bis(dialkylphosphinomethyl)pyridines: Improved C–H Activation, Expanded Reaction Scope, and Catalytic Direct Arylation. Organometallics, 2017, 36, 4699-4706.	2.3	16
87	A three body problem: a genuine hetero <i>tri</i> metallic molecule <i>vs.</i> a mixture of two parent hetero <i>bi</i> metallic molecules. Chemical Science, 2018, 9, 4736-4745.	7.4	16
88	Lanthanum(III) chloroaluminate and chlorogallate complexes with toluene and hexamethylbenzene: The effect of arene methylation on the structure. Journal of Molecular Structure, 2008, 890, 116-122.	3.6	15
89	Redox Activity, Ligand Protonation, and Variable Coordination Modes of Diimino-Pyrrole Complexes of Palladium. Inorganic Chemistry, 2018, 57, 7044-7050.	4.0	15
90	Tetranuclear copper(i) carboxylates: the effect of a stepwise increase in Lewis acidity on solid-state structures and photoluminescence. Dalton Transactions, 2011, 40, 8598.	3.3	14

#	Article	IF	Citations
91	Diastereoselectivity in the Staudinger reaction of pentafluorosulfanylaldimines and ketimines. Beilstein Journal of Organic Chemistry, 2013, 9, 2675-2680.	2.2	14
92	Soluble Lead and Bismuth Chalcogenidometallates: Versatile Solders for Thermoelectric Materials. Chemistry of Materials, 2017, 29, 6396-6404.	6.7	14
93	Hetero <i>tri</i> metallic Precursor with 2:2:1 Metal Ratio Requiring at Least a Pentanuclear Molecular Assembly. Journal of the American Chemical Society, 2020, 142, 12767-12776.	13.7	14
94	Enzyme-Like Hydroxylation of Aliphatic C–H Bonds From an Isolable Co-Oxo Complex. Journal of the American Chemical Society, 2021, 143, 20849-20862.	13.7	14
95	Mixed-Ligand Approach to Design of Heterometallic Single-Source Precursors with Discrete Molecular Structure. Inorganic Chemistry, 2014, 53, 4733-4738.	4.0	13
96	Self-Assembled Cage Structures and Ethylene Polymerization Behavior of Palladium Alkyl Complexes That Contain Phosphine-Bis(arenesulfonate) Ligands. Organometallics, 2016, 35, 3557-3568.	2.3	13
97	Catalytic hydrogenation enabled by ligand-based storage of hydrogen. Chemical Communications, 2021, 57, 3869-3872.	4.1	13
98	Gas phase synthesis and X-ray crystal structures of supramolecular networks with bromocorannulene: Similarities and differences with their corannulene analogs. Journal of Organometallic Chemistry, 2008, 693, 1590-1596.	1.8	12
99	Condensation of nitriles with amides promoted by coordinatively unsaturated bis-nickel(ii)-hydroxy complex: a new route to alkyl- and aryl-imidoylamidines. Chemical Communications, 2010, 46, 424-426.	4.1	12
100	Position Assignment and Oxidation State Recognition of Fe and Co Centers in Heterometallic Mixed-Valent Molecular Precursors for the Low-Temperature Preparation of Target Spinel Oxide Materials. Inorganic Chemistry, 2017, 56, 9574-9584.	4.0	12
101	Dimethyl selenoxide. Acta Crystallographica Section C: Crystal Structure Communications, 2005, 61, o596-o598.	0.4	11
102	Steric and counterion effects on the structure of dipicolylamine nickel complexes. Inorganica Chimica Acta, 2010, 363, 884-890.	2.4	11
103	Three to tango requires a site-specific substitution: heterotrimetallic molecular precursors for high-voltage rechargeable batteries. Chemical Science, 2019, 10, 524-534.	7.4	11
104	Synthesis, Characterization, and Theoretical Investigation of a Transition State Analogue for Proton Transfer during C–H Activation by a Rhodium-Pincer Complex. Organometallics, 2019, 38, 1407-1412.	2.3	11
105	Electrostatic <i>>vs.</i> inductive effects in phosphine ligand donor properties and reactivity. Chemical Science, 2022, 13, 4377-4387.	7.4	11
106	Siteâ€Directed Dimerization of Bowlâ€Shaped Radical Anions to Form a Ïfâ€Bonded Dibenzocorannulene Dimer. Angewandte Chemie, 2018, 130, 6279-6283.	2.0	10
107	Monoâ€reduced Corannulene: To Couple and Not to Couple in One Crystal. Chemistry - A European Journal, 2019, 25, 14140-14147.	3.3	10
108	Synthesis, modular composition, and electrochemical properties of lamellar iron sulfides. Journal of Materials Chemistry A, 2020, 8, 15834-15844.	10.3	10

#	Article	IF	CITATIONS
109	Crystal structures and quantitative structure–property relationships of spirobipyrrolidinium and the oxygen-containing derivatives. Journal of Molecular Structure, 2010, 984, 300-306.	3.6	9
110	Expanding the Structural Motif Landscape of Heterometallic \hat{l}^2 -Diketonates: Congruently Melting Ionic Solids. Inorganic Chemistry, 2018, 57, 2308-2313.	4.0	9
111	Direct Aerobic Generation of a Ferric Hydroperoxo Intermediate Via a Preorganized Secondary Coordination Sphere. Journal of the American Chemical Society, 2021, 143, 18121-18130.	13.7	9
112	Coordinatively Unsaturated Polynuclear Mixed-Valent SnII–SnIV and CuII–SnIV Oxo-Centered Carboxylates. Journal of Cluster Science, 2010, 21, 361-370.	3.3	8
113	Neocuproine as a Redox-Active Ligand Platform on Iron and Cobalt. Inorganic Chemistry, 2019, 58, 9057-9066.	4.0	8
114	Bulk material vs. single crystal: powder diffraction to the rescue. Dalton Transactions, 2004, , 4120.	3.3	7
115	Synthesis of Alternating Donor–Acceptor Ladderâ€Type Molecules and Investigation of Their Multiple Chargeâ€Transfer Pathways. Angewandte Chemie, 2018, 130, 6552-6558.	2.0	7
116	Insight into the Scope and Mechanism for Transmetalation of Hydrocarbyl Ligands on Complexes Relevant to C–H Activation. Organometallics, 2021, 40, 6-10.	2.3	7
117	Homoleptic Tetranuclear Complexes of Divalent Tin and Lead Tetraolates. Inorganic Chemistry, 2011, 50, 7295-7300.	4.0	6
118	Polynuclear Copper(I) Clusters Supported by Carboxylate Ligands with Coordinatively Active Ester Group. Journal of Cluster Science, 2012, 23, 811-821.	3.3	6
119	Synthesis and characterization of {[Cul3Sn2(OBut)6]+[Cull(hfac)3]â^'} â€" A heterometallic cluster with unique triangular copper(l) core. Inorganica Chimica Acta, 2015, 424, 156-161.	2.4	6
120	Nickel(<scp>ii</scp>)-methyl complexes adopting unusual seesaw geometries. Chemical Communications, 2020, 56, 7861-7864.	4.1	6
121	Spin modulation and electrochemical behavior of a five-coordinate cobalt(III) salen complex. Journal of Coordination Chemistry, 2016, 69, 1695-1708.	2.2	5
122	Synthesis and structural characterization of well-defined bis(oxamato)palladate(II) precatalysts for Suzuki and Heck reactions. Inorganica Chimica Acta, 2018, 471, 788-796.	2.4	5
123	Sulfonateâ€Ligated Coordination Polymers Incorporating Paramagnetic Transition Metals. European Journal of Inorganic Chemistry, 2019, 2019, 2613-2617.	2.0	5
124	Heterotrimetallic Mixedâ€Valent Molecular Precursors Containing Periodic Table Neighbors: Assignment of Metal Positions and Oxidation States. Angewandte Chemie - International Edition, 2020, 59, 9624-9630.	13.8	5
125	Functionalized fullerene cations {R–C60}+ from a theoretical point of view. Physical Chemistry Chemical Physics, 2012, 14, 10935.	2.8	4
126	Synthesis of Borophosphonate Cage Compounds: Influence of Substituent and Concentration Effects on Product Distribution in Condensation Reactions of Aryl Phosphonic Acids and Boronic Acids. Organometallics, 2015, 34, 254-262.	2.3	4

#	Article	IF	CITATIONS
127	Steric and electronic effects of ligand substitution on redox-active Fe ₄ S ₄ -based coordination polymers. Dalton Transactions, 2021, 50, 10798-10805.	3.3	4
128	Hexa-ν-chlorido-hexachlorido(η ⁶ -hexamethylbenzene)trialuminium(III)lanthanum(III) benzene solvate. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, m286-m287.	0.2	4
129	Theoretical study pyridine-substituted α-diketones. Computational and Theoretical Chemistry, 2004, 711, 7-11.	1.5	3
130	1,4-Bis(p-tolylethynyl)benzene. Acta Crystallographica Section C: Crystal Structure Communications, 2005, 61, o193-o194.	0.4	3
131	Enhanced Corrugation and Chemical Contrast of Diblock Copolymer Films by Sequential Solvent Exposures. Journal of Physical Chemistry C, 2018, 122, 23117-23122.	3.1	3
132	Copper(I) butyrate: a tetranuclear core revealed. Zeitschrift Fýr Kristallographie, 2012, 227, 147-150.	1.1	2
133	Monoreduced 1,2-dihydrocorannulene <i>versus</i> the parent corannulene. Acta Crystallographica Section C, Structural Chemistry, 2015, 71, 690-694.	0.5	2
134	Crystal structure of the inverse crown ether tetrakis [$\hat{1}^1$ 42-bis(trimethylsilyl)amido]- $\hat{1}^1$ 44-oxido-dicobalt(II)disodium, [Co2Na2{ $\hat{1}^1$ 42-N(SiMe3)2}4]($\hat{1}^1$ 44-O). Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 780-784.	0.5	2
135	Nickel Promoted Condensation of Acetamide and Benzonitrile for the Synthesis of an Imidoylamidine (N-NacNac) via Stable Imidoylamide Intermediate. Organometallics, 2019, 38, 2512-2522.	2.3	2
136	Heterotrimetallic Mixedâ€Valent Molecular Precursors Containing Periodic Table Neighbors: Assignment of Metal Positions and Oxidation States. Angewandte Chemie, 2020, 132, 9711-9717.	2.0	2
137	Iron(II) Complexes Featuring a Redoxâ€Active Dihydrazonopyrrole Ligand. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 1415-1420.	1.2	2
138	Fullerene fragments-based molecular materials: predicting properties from solid-state packing. Acta Crystallographica Section A: Foundations and Advances, 2009, 65, s85-s86.	0.3	1
139	Bis(1,1,1,5,5,5-hexafluoropentane-2,4-dionato)tetrakis(\hat{l} /44-1,1,1,5,5,5-hexafluoropentane-2,2,4,4-tetraolato)copy a prospective precursor for Cu-doped SnO2films. Acta Crystallographica Section C: Crystal Structure Communications, 2013, 69, 1427-1430.	per(II)octa 0.4	tin(ll):
140	Frontispiece: Synthesis of Alternating Donor–Acceptor Ladderâ€Type Molecules and Investigation of Their Multiple Chargeâ€Transfer Pathways. Angewandte Chemie - International Edition, 2018, 57, .	13.8	1
141	Synthesis, Structure, and Bonding of d 3 Molybdenum–Oxo Complexes. Angewandte Chemie - International Edition, 2020, 59, 10581-10586.	13.8	1
142	Crystal structure of Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 1595-1598.	0.5	1
143	Crystal structure of zwitterionic 2-[bis(2-methoxyphenyl)phosphaniumyl]-4-methylbenzenesulfonate monohydrate dichloromethane monosolvate. Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 229-232.	0.5	1
144	Reshaping Rubrene by Controlled Reduction with Alkali Metals (Eur. J. Inorg. Chem. 29/2012). European Journal of Inorganic Chemistry, 2012, 2012, .	2.0	0

#	Article	IF	CITATIONS
145	Building a two-dimensional network from mixed-valence copper units held together by acetone bridges. Acta Crystallographica Section C: Crystal Structure Communications, 2013, 69, 1416-1420.	0.4	O
146	Frontispiz: Synthesis of Alternating Donor–Acceptor Ladderâ€Type Molecules and Investigation of Their Multiple Chargeâ€Transfer Pathways. Angewandte Chemie, 2018, 130, .	2.0	0
147	Atomic-Resolution Imaging and Spectroscopy of Functionalized MXene Nanosheets. Microscopy and Microanalysis, 2020, 26, 2328-2330.	0.4	O
148	Synthesis, Structure, and Bonding of d 3 Molybdenum–Oxo Complexes. Angewandte Chemie, 2020, 132, 10668-10673.	2.0	0
149	Crystal structure of (n-butyl)[2-(2,6-dimethoxyphenyl)-6-methylphenyl](2-methoxyphenyl)phosphonium chloride monohydrate. Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 174-177.	0.5	0
150	Crystal structure of 3-[(2-acetamidophenyl)imino]butan-2-one. Acta Crystallographica Section E: Crystallographic Communications, 2018, 74, 193-195.	0.5	0
151	Crystal structure of 4′-allyl-4,5,6,7,2′,7′-hexachlorofluorescein allyl ester unknown solvate. Acta Crystallographica Section E: Crystallographic Communications, 2018, 74, 83-87.	0.5	O