Emmanuel Darcq

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6404352/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent advances in basic science methodology to evaluate opioid safety profiles and to understand opioid activities. Faculty Reviews, 2021, 10, 15.	3.9	1
2	Evaluation of Amide Bioisosteres Leading to 1,2,3-Triazole Containing Compounds as GPR88 Agonists: Design, Synthesis, and Structure–Activity Relationship Studies. Journal of Medicinal Chemistry, 2021, 64, 12397-12413.	6.4	19
3	Ackr3-Venus knock-in mouse lights up brain vasculature. Molecular Brain, 2021, 14, 151.	2.6	6
4	Chronic generalized pain disrupts whole brain functional connectivity in mice. Brain Imaging and Behavior, 2021, 15, 2406-2416.	2.1	7
5	Mu opioid receptors in the medial habenula contribute to naloxone aversion. Neuropsychopharmacology, 2020, 45, 247-255.	5.4	45
6	The Negative Affect of Protracted Opioid Abstinence: Progress and Perspectives From Rodent Models. Biological Psychiatry, 2020, 87, 54-63.	1.3	49
7	GPCR and Alcohol-Related Behaviors in Genetically Modified Mice. Neurotherapeutics, 2020, 17, 17-42.	4.4	8
8	Design, Synthesis, and Structure–Activity Relationship Studies of (4-Alkoxyphenyl)glycinamides and Bioisosteric 1,3,4-Oxadiazoles as GPR88 Agonists. Journal of Medicinal Chemistry, 2020, 63, 14989-15012.	6.4	9
9	Targeting Morphine-Responsive Neurons: Generation of a Knock-In Mouse Line Expressing Cre Recombinase from the Mu-Opioid Receptor Gene Locus. ENeuro, 2020, 7, ENEURO.0433-19.2020.	1.9	27
10	Oxycodone-Mediated Activation of the Mu Opioid Receptor Reduces Whole Brain Functional Connectivity in Mice. ACS Pharmacology and Translational Science, 2019, 2, 264-274.	4.9	13
11	Control of aversion by glycine-gated GluN1/GluN3A NMDA receptors in the adult medial habenula. Science, 2019, 366, 250-254.	12.6	64
12	TouchScreen-based phenotyping: altered stimulus/reward association and lower perseveration to gain a reward in mu opioid receptor knockout mice. Scientific Reports, 2019, 9, 4044.	3.3	10
13	Biased Signaling of the Mu Opioid Receptor Revealed in Native Neurons. IScience, 2019, 14, 47-57.	4.1	65
14	Current strategies toward safer mu opioid receptor drugs for pain management. Expert Opinion on Therapeutic Targets, 2019, 23, 315-326.	3.4	44
15	Recommending buprenorphine for pain management. Pain Management, 2019, 9, 13-16.	1.5	10
16	GPR88 in D1R-Type and D2R-Type Medium Spiny Neurons Differentially Regulates Affective and Motor Behavior. ENeuro, 2019, 6, ENEURO.0035-19.2019.	1.9	18
17	Lack of anticipatory behavior in <i>Gpr88</i> knockout mice showed by automatized home cage phenotyping. Genes, Brain and Behavior, 2018, 17, e12473.	2.2	8
18	Increased Alcohol Seeking in Mice Lacking Gpr88 Involves Dysfunctional Mesocorticolimbic Networks. Biological Psychiatry, 2018, 84, 202-212.	1.3	41

Emmanuel Darcq

#	Article	IF	CITATIONS
19	Mapping GPR88-Venus illuminates a novel role for GPR88 in sensory processing. Brain Structure and Function, 2018, 223, 1275-1296.	2.3	27
20	Rare susceptibility variants for bipolar disorder suggest a role for G protein-coupled receptors. Molecular Psychiatry, 2018, 23, 2050-2056.	7.9	31
21	Deformation-based Morphometry MRI Reveals Brain Structural Modifications in Living Mu Opioid Receptor Knockout Mice. Frontiers in Psychiatry, 2018, 9, 643.	2.6	2
22	Expression map of 78 brain-expressed mouse orphan GPCRs provides a translational resource for neuropsychiatric research. Communications Biology, 2018, 1, 102.	4.4	49
23	The Control of Reward Seeking. Biological Psychiatry, 2018, 83, 981-983.	1.3	2
24	Opioid receptors: drivers to addiction?. Nature Reviews Neuroscience, 2018, 19, 499-514.	10.2	236
25	Discovery of a Potent, Selective, and Brain-Penetrant Small Molecule that Activates the Orphan Receptor GPR88 and Reduces Alcohol Intake. Journal of Medicinal Chemistry, 2018, 61, 6748-6758.	6.4	28
26	Translating the Habenulaâ \in "From Rodents to Humans. Biological Psychiatry, 2017, 81, 296-305.	1.3	130
27	Mu Opioid Receptors in Gamma-Aminobutyric Acidergic Forebrain Neurons Moderate Motivation for Heroin and Palatable Food. Biological Psychiatry, 2017, 81, 778-788.	1.3	53
28	Fyn Signaling Is Compartmentalized to Dopamine D1 Receptor Expressing Neurons in the Dorsal Medial Striatum. Frontiers in Molecular Neuroscience, 2017, 10, 273.	2.9	8
29	BOLD Imaging in Awake Wild-Type and Mu-Opioid Receptor Knock-Out Mice Reveals On-Target Activation Maps in Response to Oxycodone. Frontiers in Neuroscience, 2016, 10, 471.	2.8	25
30	Deletion of the mu opioid receptor gene in mice reshapes the reward–aversion connectome. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11603-11608.	7.1	64
31	The Neurotrophic Factor Receptor p75 in the Rat Dorsolateral Striatum Drives Excessive Alcohol Drinking. Journal of Neuroscience, 2016, 36, 10116-10127.	3.6	41
32	Targeting Opioid Receptors for Innovative Antidepressant Therapies: Rediscovering the Opioid Cure. , 2016, , 631-653.		0
33	The BDNF Valine 68 to Methionine Polymorphism Increases Compulsive Alcohol Drinking in Mice That Is Reversed by Tropomyosin Receptor Kinase B Activation. Biological Psychiatry, 2016, 79, 463-473.	1.3	76
34	<scp>PI</scp> 3K signaling in the locus coeruleus: aÂnew molecular pathway for <scp>ADHD</scp> Âresearch. EMBO Molecular Medicine, 2015, 7, 859-861.	6.9	12
35	Delta opioid receptors expressed in forebrain GABAergic neurons are responsible for SNC80-induced seizures. Behavioural Brain Research, 2015, 278, 429-434.	2.2	60
36	MicroRNA-30a-5p in the prefrontal cortex controls the transition from moderate to excessive alcohol consumption. Molecular Psychiatry, 2015, 20, 1240-1250.	7.9	65

Emmanuel Darcq

#	Article	IF	CITATIONS
37	A Novel Anxiogenic Role for the Delta Opioid Receptor Expressed in GABAergic Forebrain Neurons. Biological Psychiatry, 2015, 77, 404-415.	1.3	31
38	Striatal-Enriched Protein Tyrosine Phosphatase Controls Responses to Aversive Stimuli: Implication for Ethanol Drinking. PLoS ONE, 2015, 10, e0127408.	2.5	17
39	Inhibition of striatalâ€enriched tyrosine phosphatase 61 in the dorsomedial striatum is sufficient to increased ethanol consumption. Journal of Neurochemistry, 2014, 129, 1024-1034.	3.9	25
40	Chromatin remodeling $\hat{a} \in$ " a novel strategy to control excessive alcohol drinking. Translational Psychiatry, 2013, 3, e231-e231.	4.8	132
41	Protein Tyrosine Phosphatase α in the Dorsomedial Striatum Promotes Excessive Ethanol-Drinking Behaviors. Journal of Neuroscience, 2013, 33, 14369-14378.	3.6	32
42	RSK2 Signaling in Medial Habenula Contributes to Acute Morphine Analgesia. Neuropsychopharmacology, 2012, 37, 1288-1296.	5.4	27
43	Ethanol-Mediated Facilitation of AMPA Receptor Function in the Dorsomedial Striatum: Implications for Alcohol Drinking Behavior. Journal of Neuroscience, 2012, 32, 15124-15132.	3.6	83
44	Protracted abstinence from distinct drugs of abuse shows regulation of a common gene network. Addiction Biology, 2012, 17, 1-12.	2.6	48
45	Impaired Emotional-Like Behavior and Serotonergic Function During Protracted Abstinence from Chronic Morphine. Biological Psychiatry, 2011, 69, 236-244.	1.3	125
46	RSK2 signaling in brain habenula contributes to place aversion learning. Learning and Memory, 2011, 18, 574-578.	1.3	25
47	<i>Cene Expression Is Altered in the Lateral Hypothalamus upon Activation of the mu Opioid Receptor</i> . Annals of the New York Academy of Sciences, 2008, 1129, 175-184.	3.8	26
48	Muâ€opioid receptor activation induces transcriptional plasticity in the central extended amygdala. European Journal of Neuroscience, 2008, 27, 2973-2984.	2.6	74