Sie Chin Tjong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6404134/publications.pdf

Version: 2024-02-01

410 papers

20,094 citations

67 h-index 123 g-index

432 all docs

432 docs citations

times ranked

432

15654 citing authors

#	Article	IF	CITATIONS
1	Corrosion resistance of dodecanethiol-modified magnesium hydroxide coating on AZ31 magnesium alloy. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	24
2	Recent Advances in Zinc Oxide Nanostructures with Antimicrobial Activities. International Journal of Molecular Sciences, 2020, 21, 8836.	4.1	52
3	Polyetheretherketone and Its Composites for Bone Replacement and Regeneration. Polymers, 2020, 12, 2858.	4.5	69
4	Interactions of Zinc Oxide Nanostructures with Mammalian Cells: Cytotoxicity and Photocatalytic Toxicity. International Journal of Molecular Sciences, 2020, 21, 6305.	4.1	69
5	Visible-Light Active Titanium Dioxide Nanomaterials with Bactericidal Properties. Nanomaterials, 2020, 10, 124.	4.1	118
6	Degradation aspects of endocrine disrupting chemicals: A review on photocatalytic processes and photocatalysts. Applied Catalysis A: General, 2020, 597, 117547.	4.3	57
7	Antibacterial Activities of Aliphatic Polyester Nanocomposites with Silver Nanoparticles and/or Graphene Oxide Sheets. Nanomaterials, 2019, 9, 1102.	4.1	44
8	Electrospun Polyvinylidene Fluoride-Based Fibrous Scaffolds with Piezoelectric Characteristics for Bone and Neural Tissue Engineering. Nanomaterials, 2019, 9, 952.	4.1	109
9	Enhanced electrochemical performance of solid PEO/LiClO4 electrolytes with a 3D porous Li6.28La3Zr2Al0.24O12 network. Composites Science and Technology, 2019, 184, 107863.	7.8	38
10	Corrosion resistance of a silane/ceria modified Mg-Al-layered double hydroxide on AA5005 aluminum alloy. Frontiers of Materials Science, 2019, 13, 420-430.	2.2	13
11	Bactericidal and Cytotoxic Properties of Silver Nanoparticles. International Journal of Molecular Sciences, 2019, 20, 449.	4.1	588
12	Synthetic Biodegradable Aliphatic Polyester Nanocomposites Reinforced with Nanohydroxyapatite and/or Graphene Oxide for Bone Tissue Engineering Applications. Nanomaterials, 2019, 9, 590.	4.1	52
13	Fe3O4 decorated graphene/poly(vinylidene fluoride) nanocomposites with high dielectric constant and low dielectric loss. Composites Science and Technology, 2019, 171, 152-161.	7.8	32
14	4.2 Effect of Interface Strength on Metal Matrix Composites Properties. , 2018, , 22-59.		3
15	Graphene Nanomaterials: Synthesis, Biocompatibility, and Cytotoxicity. International Journal of Molecular Sciences, 2018, 19, 3564.	4.1	293
16	Polyvinylidene fluoride: a versatile polymer for biomedical, electronic, energy and environmental applications. EXPRESS Polymer Letters, 2018, 12, 395-395.	2.1	4
17	Novel electrospun polyvinylidene fluoride-graphene oxide-silver nanocomposite membranes with protein and bacterial antifouling characteristics. EXPRESS Polymer Letters, 2018, 12, 365-382.	2.1	42
18	Scalable Fabrication of High-Performance Transparent Conductors Using Graphene Oxide-Stabilized Single-Walled Carbon Nanotube Inks. Nanomaterials, 2018, 8, 224.	4.1	11

#	Article	IF	CITATIONS
19	Development and Antibacterial Performance of Novel Polylactic Acid-Graphene Oxide-Silver Nanoparticle Hybrid Nanocomposite Mats Prepared By Electrospinning. ACS Biomaterials Science and Engineering, 2017, 3, 471-486.	5.2	136
20	Silver-decorated reduced graphene oxides as novel building blocks for transparent conductive films. RSC Advances, 2017, 7, 2058-2065.	3.6	32
21	Designing biocompatible PEEK-based nanocomposites for load-bearing implant applications. EXPRESS Polymer Letters, 2017, 11, 434-434.	2.1	1
22	Polyetheretherketone Hybrid Composites with Bioactive Nanohydroxyapatite and Multiwalled Carbon Nanotube Fillers. Polymers, 2016, 8, 425.	4.5	38
23	Nanostructured transparent conductive films: Fabrication, characterization and applications. Materials Science and Engineering Reports, 2016, 109, 1-101.	31.8	104
24	Aqueous graphene oxide-dispersed carbon nanotubes as inks for the scalable production of all-carbon transparent conductive films. Journal of Materials Chemistry C, 2016, 4, 7043-7051.	5 . 5	36
25	Preparation of polyetheretherketone composites with nanohydroxyapatite rods and carbon nanofibers having high strength, good biocompatibility and excellent thermal stability. RSC Advances, 2016, 6, 19417-19429.	3.6	45
26	Novel Ferroelectric Hybrid Poly(vinylidene fluoride)/Graphene Oxide Nanocomposite for Photosensor Applications. Journal of Nanoelectronics and Optoelectronics, 2016, 11, 435-440.	0.5	2
27	Novel Electrospun Polylactic Acid Nanocomposite Fiber Mats with Hybrid Graphene Oxide and Nanohydroxyapatite Reinforcements Having Enhanced Biocompatibility. Polymers, 2016, 8, 287.	4.5	88
28	Facile synthesis of silver-decorated reduced graphene oxide as a hybrid filler material for electrically conductive polymer composites. RSC Advances, 2015, 5, 15070-15076.	3.6	42
29	Polymer nanocomposites for energy applications. EXPRESS Polymer Letters, 2015, 9, 401-401.	2.1	1
30	Polypropylene Biocomposites with Boron Nitride and Nanohydroxyapatite Reinforcements. Materials, 2015, 8, 992-1008.	2.9	28
31	High dielectric permittivity and low loss tangent of polystyrene incorporated with hydrophobic core–shell copper nanowires. RSC Advances, 2015, 5, 38452-38459.	3.6	18
32	Melt-compounded polylactic acid composite hybrids with hydroxyapatite nanorods and silver nanoparticles: biodegradation, antibacterial ability, bioactivity and cytotoxicity. RSC Advances, 2015, 5, 72288-72299.	3.6	40
33	Electrical and photoresponse properties of Au/ reduced graphene:poly(3-hexylthiophene) nanocomposite /p-Si photodiodes. Optical and Quantum Electronics, 2015, 47, 1779-1789.	3.3	11
34	Facile preparation, characterization and performance of noncovalently functionalized graphene/epoxy nanocomposites with poly(sodium 4-styrenesulfonate). Composites Part A: Applied Science and Manufacturing, 2015, 68, 1-9.	7.6	61
35	The development, fabrication, and material characterization of polypropylene composites reinforced with carbon nanofiber and hydroxyapatite nanorod hybrid fillers. International Journal of Nanomedicine, 2014, 9, 1299.	6.7	36
36	Effect of Secondary Phase Precipitation on the Corrosion Behavior of Duplex Stainless Steels. Materials, 2014, 7, 5268-5304.	2.9	146

#	Article	lF	CITATIONS
37	Polymer Composites with Graphene Nanofillers: Electrical Properties and Applications. Journal of Nanoscience and Nanotechnology, 2014, 14, 1154-1168.	0.9	57
38	Preparation, Structure, and Application of Carbon Nanotubes/Bamboo Charcoal Composite. , 2014, , 1-25.		4
39	Nano silver-anchored reduced graphene oxide sheets for enhanced dielectric performance of polymer nanocomposites. RSC Advances, 2014, 4, 28426-28431.	3.6	36
40	Electrical behavior and positive temperature coefficient effect of graphene/polyvinylidene fluoride composites containing silver nanowires. Nanoscale Research Letters, 2014, 9, 375.	5.7	30
41	Zener Tunneling in Polymer Nanocomposites with Carbonaceous Fillers. , 2014, , 377-406.		2
42	Synthesis and Structural–Mechanical Property Characteristics of Graphene–Polymer Nanocomposites. , 2014, , 335-375.		5
43	Electrical Conductivity Properties of Polyvinyl Alcohol: Graphene Nanocomposites. Journal of Nanoelectronics and Optoelectronics, 2014, 9, 678-684.	0.5	3
44	Low percolation threshold of graphene/polymer composites prepared by solvothermal reduction of graphene oxide in the polymer solution. Nanoscale Research Letters, 2013, 8, 132.	5.7	113
45	Novel polypropylene biocomposites reinforced with carbon nanotubes and hydroxyapatite nanorods for bone replacements. Materials Science and Engineering C, 2013, 33, 1380-1388.	7. 3	67
46	Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Materials Science and Engineering Reports, 2013, 74, 281-350.	31.8	918
47	A graphene oxide–polyvinylidene fluoride mixture as a precursor for fabricating thermally reduced graphene oxide–polyvinylidene fluoride composites. RSC Advances, 2013, 3, 22981.	3.6	25
48	Mechanical and Thermal Performance of High-Density Polyethylene/Alumina Nanocomposites. Journal of Macromolecular Science - Physics, 2013, 52, 812-825.	1.0	20
49	Zener tunneling in conductive graphite/epoxy composites: Dielectric breakdown aspects. EXPRESS Polymer Letters, 2013, 7, 375-382.	2.1	20
50	Fracture Behavior of Short Carbon Fiber Reinforced Polymer Composites., 2012,, 117-143.		0
51	Electrical Properties of Binary PVDF/clay and Ternary Graphite-doped PVDF/clay Nanocomposites. Current Nanoscience, 2012, 8, 732-738.	1.2	8
52	Carbon nanotube/epoxy resin composite: Correlation between state of nanotube dispersion and Zener tunneling parameters. Synthetic Metals, 2012, 162, 2277-2281.	3.9	17
53	Universality of Zener tunneling in carbon/polymer composites. Synthetic Metals, 2012, 161, 2647-2650.	3.9	20
54	Sintered Hydroxyapatite/Polyetheretherketone Nanocomposites: Mechanical Behavior and Biocompatibility. Advanced Engineering Materials, 2012, 14, B155.	3.5	43

#	Article	IF	Citations
55	Mechanical and thermal behaviour of polyamide 6/silicon carbide nanocomposites toughened with maleated styrene–ethylene–butylene–styrene elastomer. Fatigue and Fracture of Engineering Materials and Structures, 2012, 35, 56-63.	3.4	14
56	Synthesis of multiwalled carbon nanotubes from bamboo charcoal and the roles of minerals on their growth. Biomass and Bioenergy, 2012, 36, 12-19.	5.7	93
57	Graphene and its derivatives: Novel materials for forming functional polymer nanocomposites. EXPRESS Polymer Letters, 2012, 6, 437-437.	2.1	14
58	Dielectric Properties of Graphite Nanosheets Doped Poly(vinylidene Fluoride)/Silicon Carbide Hybrid. Advanced Materials Research, 2011, 279, 3-9.	0.3	0
59	Preparation and Mechanical and Tribological Properties of High-Density Polyethylene/Hydroxyapatite Nanocomposites. Journal of Macromolecular Science - Physics, 2011, 50, 1325-1337.	1.0	24
60	Preparation and Characterization of Isotactic Polypropylene Reinforced with Hydroxyapatite Nanorods. Journal of Macromolecular Science - Physics, 2011, 50, 1983-1995.	1.0	11
61	Nonlinear electrical conduction in percolating systems induced by internal field emission. Synthetic Metals, 2011, 161, 540-543.	3.9	27
62	Hydrothermal Synthesis and Biocompatibility of Hydroxyapatite Nanorods. Journal of Nanoscience and Nanotechnology, 2011, 11, 10444-10448.	0.9	12
63	Electrical Conductivity of Polyvinylidene Fluoride Nanocomposites with Carbon Nanotubes and Nanofibers. Journal of Nanoscience and Nanotechnology, 2011, 11, 10668-10672.	0.9	7
64	Polymer nanocomposite bipolar plates reinforced with carbon nanotubes and graphite nanosheets. Energy and Environmental Science, 2011, 4, 605.	30.8	49
65	The formation of βâ€polypropylene crystals in a compatibilized blend of isotactic polypropylene and polyamideâ€6. Polymer Engineering and Science, 2011, 51, 403-410.	3.1	11
66	Effects of carbon nanofibers on the fracture, mechanical, and thermal properties of PP/SEBSâ€∢i>g⟨ i>â€MA blends. Polymer Engineering and Science, 2011, 51, 948-958.	3.1	27
67	Spark Plasma Sintered Hydroxyapatite/Graphite Nanosheet and Hydroxyapatite/Multiwalled Carbon Nanotube Composites: Mechanical and in Vitro Cellular Properties. Advanced Engineering Materials, 2011, 13, 336-341.	3.5	58
68	Microstructure and fracture behavior of maleated highâ€density polyethylene/ silicon carbide nanocomposites toughened with poly(styreneâ€ethyleneâ€butyleneâ€styrene) triblock copolymer. Advances in Polymer Technology, 2011, 30, 322-333.	1.7	11
69	Effect of mechanical stretching on electrical conductivity and positive temperature coefficient characteristics of poly(vinylidene fluoride)/carbon nanofiber composites prepared by non-solvent precipitation. Carbon, 2011, 49, 1758-1768.	10.3	116
70	Mechanical, Thermal and Bioactive Behaviors of Polyamide 6/Hydroxyapatite Nanocomposites. Journal of Nanoscience and Nanotechnology, 2011, 11, 10644-10648.	0.9	5
71	Direct Current Conductivity of Carbon Nanofiber-Based Conductive Polymer Composites: Effects of Temperature and Electric Field. Journal of Nanoscience and Nanotechnology, 2011, 11, 3916-3921.	0.9	11
72	Properties of Polyamide-6 Composites Reinforced with Hydroxyapatite Nanospheres. Journal of Macromolecular Science - Physics, 2011, 50, 2442-2453.	1.0	0

#	Article	IF	Citations
73	Fracture Toughness of Polyamide 6/ Maleated Styrene-Ethylene-Butylene-Styrene/Silicon Carbide Nanocomposites. Advanced Materials Research, 2011, 275, 229-233.	0.3	2
74	Structure and Electrical Characteristics of Poly(vinylidene fluoride) Filled with Beta Silicon Carbide Nanoparticles. Journal of Nanoscience and Nanotechnology, 2011, 11, 5148-5153.	0.9	7
75	Effect of Silicon Carbide Nanoparticle Additions on Microstructure and Mechanical Behavior of Maleic Anhydride Compatibilized High Density Polyethylene Composites. Composite Interfaces, 2011, 18, 107-120.	2.3	11
76	Dielectric properties of binary polyvinylidene fluoride/barium titanate nanocomposites and their nanographite doped hybrids. EXPRESS Polymer Letters, 2011, 5, 526-534.	2.1	78
77	Alternating current electrical conductivity of high-density polyethylene-carbon nanofiber composites. European Physical Journal E, 2010, 32, 249-254.	1.6	19
78	A facile method for the synthesis of ZnS/polystyrene composite particles and ZnS hollow micro-spheres. Journal of Materials Science, 2010, 45, 777-782.	3.7	28
79	Spark Plasma Sintered Hydroxyapatite/Multiwalled Carbon Nanotube Composites With Preferred Crystal Orientation. Advanced Engineering Materials, 2010, 12, 1161-1165.	3.5	6
80	Mechanical and hygrothermal aging study on quaternary polyamide 6/maleated styrene-ethylene-butylenestyrene/ clay/short glass fiber hybrid composites. E-Polymers, 2010, 10, .	3.0	0
81	Polymer/Ceramic Composite Hybrids Containing Multi-walled Carbon Nanotubes with High Dielectric Permittivity. Current Nanoscience, 2010, 6, 40-44.	1.2	15
82	Electrical transport properties of graphite sheets doped polyvinylidene fluoride nanocomposites. Journal of Materials Research, 2010, 25, 1645-1648.	2.6	11
83	Dielectric properties of binary BaTiO <inf>3</inf> /PVDF and graphite doped GN/BaTiO <inf>3</inf> /PVDF nanocomposites., 2010,,.		0
84	Hydrothermal synthesis and bio-mineralization of hydroxyapatite nanorod. , 2010, , .		0
85	Structure, mechanical and bioactive behaviors of polyamide 6/hydroxyapatite nanocomposites. , 2010, , .		0
86	Dielectric Response of polyvinylidene fluoride loaded with silicon carbide nanoparticles. , 2010, , .		0
87	Carbon nanotubes - attractive nanofillers for forming bio-, functional and structural polymer composites. EXPRESS Polymer Letters, 2010, 4, 516-516.	2.1	7
88	Frequency and Temperature Dependences of Dielectric Dispersion and Electrical Properties of Polyvinylidene Fluoride/Expanded Graphite Composites. Journal of Nanomaterials, 2010, 2010, 1-10.	2.7	21
89	Essential work of fracture study on thermoplastic polyolefin filled with silicon carbide nanoparticles. E-Polymers, 2010, 10 , .	3.0	0
90	Mechanical and Fracture Behaviors of Elastomer-Rich Thermoplastic Polyolefin/ Nanocomposites. Journal of Nanomaterials, 2010, 2010, 1-9.	2.7	11

#	Article	IF	CITATIONS
91	Electrical conductivity and dielectric response of poly(vinylidene fluoride)–graphite nanoplatelet composites. Synthetic Metals, 2010, 160, 1912-1919.	3.9	111
92	Internal field emission and conductivity relaxation in carbon nanofiber filled polymer system. Synthetic Metals, 2010, 160, 2085-2088.	3.9	10
93	Fabrication, mechanical properties and fracture toughness of thermoplastic polyolefin filled with carbon nanofibers. , 2010, , .		0
94	Effect of Temperature on Electrical Conduction Behavior of Polyvinylidene Fluoride Nanocomposites with Carbon Nanotubes and Nanofibers. Current Nanoscience, 2010, 6, 520-524.	1.2	11
95	Corrosion Protection of In Situ Al-Based Composite by Cerium Conversion Treatment. Journal of Materials Engineering and Performance, 2009, 18, 88-94.	2.5	18
96	Temperature and strain rate dependences of yield stress of polypropylene composites reinforced with carbon nanofibers. Polymer Composites, 2009, 30, 1749-1760.	4.6	17
97	Immobilization of RAFT agents on silica nanoparticles utilizing an alternative functional group and subsequent surfaceâ€initiated RAFT polymerization. Journal of Polymer Science Part A, 2009, 47, 467-484.	2.3	39
98	Facile method to prepare monodispersed Ag/polystyrene composite microspheres and their properties. Journal of Polymer Science Part A, 2009, 47, 4547-4554.	2.3	41
99	Positive Temperature Coefficient Effect of Polypropylene/Carbon Nanotube/Montmorillonite Hybrid Nanocomposites. IEEE Nanotechnology Magazine, 2009, 8, 729-736.	2.0	51
100	Fabrication and properties of PVDF/expanded graphite nanocomposites. E-Polymers, 2009, 9, .	3.0	8
101	Deformation Mechanisms of Functionalized Carbon Nanotube Reinforced Polymer Nanocomposites., 2009,, 341-375.		3
102	Mechanical behaviors of polypropylene/carbon nanotube nanocomposites: The effects of loading rate and temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 485, 508-516.	5.6	194
103	Effects of crystallization on dispersion of carbon nanofibers and electrical properties of polymer nanocomposites. Polymer Engineering and Science, 2008, 48, 177-183.	3.1	41
104	Fracture behavior of thermoplastic polyolefin/clay nanocomposites. Journal of Applied Polymer Science, 2008, 110, 864-871.	2.6	24
105	A facile method to prepare CdS/polystyrene composite particles. Journal of Colloid and Interface Science, 2008, 326, 121-128.	9.4	35
106	Processing-structure-property aspects of particulate- and whisker-reinforced titanium matrix composites. Composites Science and Technology, 2008, 68, 583-601.	7.8	435
107	Electrical properties of percolative polystyrene/carbon nanofiber composites. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15, 214-220.	2.9	40
108	Fabrication and electrical conducting behavior of carbon nanofiber reinforced high-density polyethylene/ polystyrene nanocomposites with low percolation threshold. E-Polymers, 2008, 8, .	3.0	1

#	Article	IF	Citations
109	PROPERTIES OF CHEMICAL VAPOR DEPOSITED NANOCRYSTALLINE DIAMOND AND NANODIAMOND/AMORPHOUS CARBON COMPOSITE FILMS. , 2007, , 167-206.		6
110	Structure and Mechanical Behavior of Isotactic Polypropylene Composites Filled with Silver Nanoparticles. E-Polymers, 2007, 7, .	3.0	10
111	Impact essential work of fracture of polypropylene/montmorillonite nanocomposites toughened with SEBS-g-MA elastomer. Composites Part A: Applied Science and Manufacturing, 2007, 38, 378-387.	7.6	76
112	Electrical Behavior of High Density Polyethylene/ZnO Nano-composites. E-Polymers, 2007, 7, .	3.0	0
113	Corrosion Behavior of Alâ€based Composites Containing <i>lnâ€situ</i> TiB ₂ , Al ₂ , Al ₃ TiB ₂ , Sodium Chloride Solution. Advanced Engineering Materials, 2007, 9, 588-593.	3.5	8
114	Novel Nanoparticleâ€Reinforced Metal Matrix Composites with Enhanced Mechanical Properties. Advanced Engineering Materials, 2007, 9, 639-652.	3.5	524
115	Electrical Conducting Behavior of Polyethylene Composites Filled with Selfâ€Passivated Aluminum Nanoparticles and Carbon Nanotubes. Advanced Engineering Materials, 2007, 9, 1014-1017.	3.5	18
116	Effects of pulsing frequency on shape recovery and investigation of nickel out-diffusion after mechanical bending of nitrogen plasma implanted NiTi shape memory alloys. Surface and Coatings Technology, 2007, 201, 8286-8290.	4.8	10
117	Oxygen plasma treatment to restrain nickel out-diffusion from porous nickel titanium orthopedic materials. Surface and Coatings Technology, 2007, 201, 4893-4896.	4.8	19
118	Corrosion properties of Fe–24Cr stainless alloy modified by plasma immersion ion implantation in 0.5ÂM sulfuric acid solution. Surface and Coatings Technology, 2007, 201, 6781-6784.	4.8	4
119	Fracture toughness of high density polyethylene/SEBS-g-MA/montmorillonite nanocomposites. Composites Science and Technology, 2007, 67, 314-323.	7.8	90
120	Microstructure and properties of polypropylene composites filled with silver and carbon nanotube nanoparticles prepared by melt-compounding. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 142, 55-61.	3.5	83
121	Study on the β to α transformation of polypropylene crystals in compatibilized blend of polypropylene/polyamideâ€6. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 2674-2681.	2.1	27
122	Electrical behavior of polypropylene/multiwalled carbon nanotube nanocomposites with low percolation threshold. Scripta Materialia, 2007, 57, 461-464.	5.2	158
123	Mechanical and thermal expansion behavior of hipped aluminum–TiB2 composites. Materials Chemistry and Physics, 2006, 97, 91-97.	4.0	70
124	Structural and mechanical properties of polymer nanocomposites. Materials Science and Engineering Reports, 2006, 53, 73-197.	31.8	1,234
125	Low-cycle fatigue behavior of in situ TiB2/Cu composite prepared by reactive hot pressing. Journal of Materials Science, 2006, 41, 5263-5268.	3.7	9
126	Electrical properties of low-density polyethylene/ZnO nanocomposites. Materials Chemistry and Physics, 2006, 100, 1-5.	4.0	86

#	Article	lF	Citations
127	Electrical properties of low-density polyethylene/multiwalled carbon nanotube nanocomposites. Materials Chemistry and Physics, 2006, 100, 132-137.	4.0	106
128	Electrical properties of low density polyethylene/ZnO nanocomposites: The effect of thermal treatments. Journal of Applied Polymer Science, 2006, 102, 1436-1444.	2.6	31
129	Surface characteristics, mechanical properties, and cytocompatibility of oxygen plasma-implanted porous nickel titanium shape memory alloy. Journal of Biomedical Materials Research - Part A, 2006, 79A, 139-146.	4.0	38
130	Fracture Characterization of High Density Polyethylene/Organoclay Nanocomposites Toughened with SEBS-g-MA. Key Engineering Materials, 2006, 312, 187-192.	0.4	2
131	High cycle fatigue response of in-situ Al-based composites containing TiB2 and Al2O3 submicron particles. Composites Science and Technology, 2005, 65, 1537-1546.	7.8	62
132	Structure, thermal and mechanical properties of in situ Al-based metal matrix composite reinforced with Al2O3 and TiC submicron particles. Materials Chemistry and Physics, 2005, 93, 109-116.	4.0	76
133	Cyclic Deformation Characteristics of Titanium-Matrix Composite Reinforced with In-situ TiB Whiskers. Advanced Engineering Materials, 2005, 7, 63-68.	3.5	10
134	Influence of Fe addition on glassy stability of an Al85Ni5Y8Co2 metallic glass with a large supercooled liquid region. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 406, 160-165.	5.6	10
135	Crystallization regime characteristics of exfoliated polyethylene/vermiculite nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 253-263.	2.1	50
136	Impact fracture toughness of polyamide-6/montmorillonite nanocomposites toughened with a maleated styrene/ethylene butylene/styrene elastomer. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 585-595.	2.1	105
137	Polypropylene/montmorillonite nanocomposites toughened with SEBS-g-MA: Structure-property relationship. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 3112-3126.	2.1	82
138	Rescaled temperature dependence of dielectric behavior of ferroelectric polymer composites. Applied Physics Letters, 2005, 86, 172905.	3.3	52
139	Morphology and Dielectric Properties of Lead Ziconate Titanate/Nano-ZnO Composite. Key Engineering Materials, 2005, 280-283, 171-174.	0.4	2
140	Internal friction and dynamic Young's modulus of aluminium composites reinforced in situ with TiB2and Al2O3particulates. Materials Science and Technology, 2004, 20, 1055-1058.	1.6	8
141	Structural-mechanical relationship of epoxy compatibilized polyamide 6/polycarbonate blends. Materials Research Bulletin, 2004, 39, 1791-1801.	5.2	27
142	Performance characteristics of compatibilized ternary Nylon 6/ABS/LCP in-situ composites. Journal of Materials Science, 2004, 39, 2737-2746.	3.7	11
143	Essential work of fracture (EWF) analysis for compression molded alternating poly(propylene) Tj ETQq1 1 0.7843	314 rgBT /0 3.1	Ovgrlock 10
144	Completely biodegradable composites of poly(propylene carbonate) and short, lignocellulose fiberHildegardia populifolia. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 666-675.	2.1	115

#	Article	IF	CITATIONS
145	Preparation and nonisothermal crystallization behavior of polyamide 6/montmorillonite nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 2878-2891.	2.1	107
146	One-step synthesis and ring-opening polymerization of novel macrocyclic(arylene multisulfide) oligomers. Journal of Applied Polymer Science, 2004, 91, 735-741.	2.6	7
147	Synthesis and degradation behavior of poly(propylene carbonate) derived from carbon dioxide and propylene oxide. Journal of Applied Polymer Science, 2004, 92, 1840-1846.	2.6	89
148	Mechanical properties of glass fiber and liquid crystalline polymer reinforced polypropylene hybrid composites toughened with elastomers. Journal of Applied Polymer Science, 2004, 94, 1539-1546.	2.6	18
149	Synthesis and Low Cycle Fatigue Behavior of In-situ Al-based Composite Reinforced with Submicron TiB2 and TiC Particulates. Advanced Engineering Materials, 2004, 6, 964-968.	3.5	12
150	Nanocrystalline materials and coatings. Materials Science and Engineering Reports, 2004, 45, 1-88.	31.8	768
151	Cyclic deformation behavior of in situ aluminum–matrix composites of the system Al–Al3Ti–TiB2–Al2O3. Composites Science and Technology, 2004, 64, 1971-1980.	7.8	38
152	Dielectric behavior and dependence of percolation threshold on the conductivity of fillers in polymer-semiconductor composites. Applied Physics Letters, 2004, 85, 97-99.	3.3	128
153	Dependence of dielectric behavior on the physical property of fillers in the polymer-matrix composites. Synthetic Metals, 2004, 146, 79-84.	3.9	138
154	High-cycle fatigue properties of Al-based composites reinforced with in situ TiB2 and Al2O3 particulates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 386, 48-53.	5.6	58
155	Title is missing!. Journal of Materials Science, 2003, 38, 207-215.	3.7	17
156	Tensile deformation mechanisms of polypropylene/elastomer blends reinforced with short glass fiber. Journal of Applied Polymer Science, 2003, 87, 441-451.	2.6	11
157	Process-structure-property relationship in ternary short-glass-fiber/elastomer/polypropylene composites. Journal of Applied Polymer Science, 2003, 88, 1384-1392.	2.6	16
158	Reinforcement of polypropylene using sisal fibers grafted with poly(methyl methacrylate). Journal of Applied Polymer Science, 2003, 88, 1055-1064.	2.6	32
159	Synthesis and photoluminescent properties of poly(aryl ether)s containing alternate emitting and electron-transporting moieties. Journal of Applied Polymer Science, 2003, 89, 1645-1651.	2.6	10
160	Melt processable and biodegradable aliphatic polycarbonate derived from carbon dioxide and propylene oxide. Journal of Applied Polymer Science, 2003, 89, 3301-3308.	2.6	24
161	Proton-exchange membrane electrolytes derived from phosphonic acid containing poly(arylene) Tj ETQq $1\ 1\ 0.78$	4314 rgBT 5.4	Qverlock 10
162	Thermal decomposition characteristics of poly(propylene carbonate) using TG/IR and Py-GC/MS techniques. Polymer Degradation and Stability, 2003, 81, 157-165.	5.8	136

#	Article	IF	Citations
163	Synthesis of a series of metallophthalocyanine end-capped poly(aryl ether sulfone)s from a dicyanoarylene group containing biphenol. Polymer, 2003, 44, 575-582.	3.8	13
164	Thermal cycling characteristics of in-situ Al-based composites prepared by reactive hot pressing. Composites Science and Technology, 2003, 63, 89-97.	7.8	32
165	An investigation on the processing of sisal fibre reinforced polypropylene composites. Composites Science and Technology, 2003, 63, 1255-1258.	7.8	145
166	Impact fracture toughness of short glass fiber-reinforced polyamide 6,6 hybrid composites containing elastomer particles using essential work of fracture concept. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 347, 338-345.	5.6	93
167	Low-cycle fatigue behavior of Al-based composites containing in situ TiB2, Al2O3 and Al3Ti reinforcements. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 358, 99-106.	5.6	44
168	Structure, morphology, mechanical and thermal characteristics of the in situ composites based on liquid crystalline polymers and thermoplastics. Materials Science and Engineering Reports, 2003, 41, 1-60.	31.8	85
169	Preparation and characterization of melt-compounded polyethylene/vermiculite nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 1476-1484.	2.1	50
170	Fabrication and properties of poly(propylene carbonate)/calcium carbonate composites. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 1806-1813.	2.1	88
171	Impact-modified polypropylene/vermiculite nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 2332-2341.	2.1	75
172	Catalytic synthesis and characterization of an alternating copolymer from carbon dioxide and propylene oxide using zinc pimelate. Polymer International, 2003, 52, 799-804.	3.1	51
173	Synthesis and characterization of phthalazinone containing poly(arylene ether)s via a novel N-C coupling reaction. Journal of Polymer Science Part A, 2003, 41, 2481-2490.	2.3	12
174	The preparation and characterization of novel cocylic(arylene disulfide) oligomers. Polymers for Advanced Technologies, 2003, 14, 114-121.	3.2	11
175	Drop weight impact and work of fracture of short glass fiber reinforced polypropylene composites toughened with elastomer. Polymer Composites, 2003, 24, 437-447.	4.6	10
176	Essential work of fracture (EWF) analysis for short glass fiber reinforced and rubber toughened nylon-6. Polymer Engineering and Science, 2003, 43, 558-569.	3.1	34
177	Synthesis of poly(arylene disulfide)-vermiculite nanocomposites via in situ ring-opening reaction of cyclic oligomers. European Polymer Journal, 2003, 39, 1735-1739.	5.4	21
178	Modification of Fatigue and Creep Properties of Ferritic Stainless Alloys Using Plasma Immersion Ion Implantation. Materials Science Forum, 2003, 426-432, 2497-2502.	0.3	1
179	Creep behavior of <i>in situ</i> dual-scale particles-TiB whisker and TiC particulate-reinforced titanium composites. Journal of Materials Research, 2002, 17, 2307-2313.	2.6	21
180	Novel Preparation and Properties of Polypropyleneâ^'Vermiculite Nanocomposites. Chemistry of Materials, 2002, 14, 44-51.	6.7	147

#	Article	IF	CITATIONS
181	Creep behaviour of precipitation-hardened ferritic Fe–19Cr–4Ni–2Al alloy. Materials Letters, 2002, 56, 59-64.	2.6	19
182	Interface modification on the properties of sisal fiber- reinforced polypropylene composites. Journal of Applied Polymer Science, 2002, 85, 169-176.	2.6	85
183	Synthesis and characterization of alternating copolymer from carbon dioxide and propylene oxide. Journal of Applied Polymer Science, 2002, 85, 2327-2334.	2.6	103
184	Preparation and performance characteristics of short-glass-fiber/maleated styrene-ethylene-butylene-styrene/polypropylene hybrid composites. Journal of Applied Polymer Science, 2002, 86, 1303-1311.	2.6	34
185	Preparation and properties of polyamide 6/polypropylene-vermiculite nanocomposite/polyamide 6 alloys. Journal of Applied Polymer Science, 2002, 86, 2330-2337.	2.6	48
186	Mechanical behavior and fracture toughness evaluation of maleic anhydride compatibilized short glass fiber/SEBS/polypropylene hybrid composites. Composites Science and Technology, 2002, 62, 831-840.	7.8	124
187	Short glass fiber-reinforced polyamide 6,6 composites toughened with maleated SEBS. Composites Science and Technology, 2002, 62, 2017-2027.	7.8	69
188	Thermally stable and high molecular weight poly(propylene carbonate)s from carbon dioxide and propylene oxide. Polymer International, 2002, 51, 1079-1085.	3.1	110
189	Fracture characteristics of short glass fibre/maleated styrene-ethylene-butylene-styrene/polypropylene hybrid composite. Polymer International, 2002, 51, 1248-1255.	3.1	24
190	Facile synthesis of high molecular weight aromatic polyformals containing phthalazinone moiety. Journal of Polymer Science Part A, 2002, 40, 1441-1448.	2.3	8
191	Effects of the structure and morphology of zinc glutarate on the fixation of carbon dioxide into polymer. Journal of Polymer Science Part A, 2002, 40, 3579-3591.	2.3	126
192	Structural properties and mechanical behavior of injection molded composites of polypropylene and sisal fiber. Polymer Composites, 2002, 23, 319-328.	4.6	41
193	Effect of thermotropic copolyesteramide on the properties of polyamide-66/liquid crystalline copolyester composites. Polymer Engineering and Science, 2002, 42, 452-460.	3.1	8
194	Structural and mechanical behavior of polypropylene/ maleated styrene-(ethylene-co-butylene)-styrene/sisal fiber composites prepared by injection molding. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 1214-1222.	2.1	49
195	Impact-specific essential work of fracture of maleic anhydride-compatibilized polypropylene/elastomer blends and their composites. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 1881-1892.	2.1	36
196	Structure and properties of polyamide-6/vermiculite nanocomposites prepared by direct melt compounding. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 2860-2870.	2.1	52
197	High-temperature creep behavior of TiC particulate reinforced Ti–6Al–4V alloy composite. Acta Materialia, 2002, 50, 4293-4302.	7.9	90
198	Flory-huggins interaction parameters of LCP/thermoplastic blends measured by DSC analysis. Magyar AprÁ³vad Közlemények, 2002, 70, 541-548.	1.4	11

#	Article	IF	CITATIONS
199	Development of single- and multi-layered metallic films on diamond by ion beam-assisted deposition. Diamond and Related Materials, 2001, 10, 1578-1583.	3.9	7
200	Interlaminar Fracture Properties of Carbon Fibre/Epoxy Matrix Composites Interleaved with Polyethylene Terephthalate (Pet) Films. Polymers and Polymer Composites, 2001, 9, 141-145.	1.9	27
201	Creep behavior of TiBw/Ti In-situ composite fabricated by reactive hot pressing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 1019-1022.	2.2	22
202	Creep deformation characteristics of discontinuously reinforced aluminium-matrix composites. Composites Science and Technology, 2001, 61, 771-786.	7.8	78
203	Synthesis of cocyclic(arylene disulfide) oligomers and their adhesion properties as heating-melt adhesive. Polymer, 2001, 42, 5215-5224.	3.8	41
204	Synthesis and proton conductivities of phosphonic acid containing poly-(arylene ether)s. Journal of Polymer Science Part A, 2001, 39, 3218-3226.	2.3	64
205	Effect of talc/MMAin situ polymerization on mechanical properties of PVC-matrix composites. Journal of Applied Polymer Science, 2001, 80, 2105-2112.	2.6	48
206	Facile synthesis and properties of semicrystalline copoly(arylene ether ketone) containing hydroquinone and phthalazinone. Journal of Applied Polymer Science, 2001, 81, 2687-2695.	2.6	8
207	Ternary polymer composites: PA6,6/maleated SEBS/glass beads. Journal of Applied Polymer Science, 2001, 81, 3231-3237.	2.6	53
208	Title is missing!. Applied Composite Materials, 2001, 8, 361-369.	2.5	6
209	The interdiffusion of Sn from AuSn solder with the barrier metal deposited on diamond. Materials Research Bulletin, 2001, 36, 153-160.	5.2	4
210	Microstructural Stability of Gas-Atomized Al-Based Nanophase Composites. Materials Transactions, 2001, 42, 1710-1716.	1.2	1
211	Effect of Compatibilizer Content on the Tensile Properties and Fracture Toughness of High Density Polyethylene/Polystyrene Blends. Polymer Journal, 2000, 32, 208-214.	2.7	10
212	The structure and physical properties ofin situ composites based on semiflexible thermotropic liquid crystalline copolyesteramide and poly(butylene terephthalate). Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 403-414.	2.1	30
213	Compatibilizing effect of styrene-maleic anhydride copolymer on the properties of polyamide-6/liquid crystalline copolyester composites. Journal of Applied Polymer Science, 2000, 77, 1964-1974.	2.6	16
214	Study onin situ reinforcing and toughening of a semiflexible thermotropic copolyesteramide in PBT/PA66 blends. Journal of Applied Polymer Science, 2000, 77, 1975-1988.	2.6	31
215	Deformation mechanisms and fracture toughness of polystyrene/high-density polyethylene blends compatibilized by triblock copolymer. Journal of Applied Polymer Science, 2000, 77, 2024-2033.	2.6	23
216	Work of fracture of polystyrene/high density polyethylene blends compatibilized by triblock copolymer. Journal of Applied Polymer Science, 2000, 77, 2074-2081.	2.6	15

#	Article	IF	CITATIONS
217	Effect of reactive compatibilizers on the mechanical properties of polycarbonate/poly(acrylonitrile-butadiene-styrene) blends. European Polymer Journal, 2000, 36, 123-129.	5.4	85
218	Effects of glass bead size and content on the viscoelasticity of filled polypropylene composites. Polymer Testing, 2000, 19, 213-220.	4.8	39
219	Brittle–tough transition in PP/EPDM blends: effects of interparticle distance and tensile deformation speed. Polymer, 2000, 41, 3479-3482.	3.8	130
220	In-situ reinforcement of PBT/ABS blends with liquid crystalline polymer. Polymer Composites, 2000, 21, 941-952.	4.6	6
221	Impact fracture behavior of PP/EPDM/glass bead ternary composites. Polymer Engineering and Science, 2000, 40, 2105-2111.	3.1	37
222	High-temperature creep behavior of SiC particulate reinforced Alî—,Feî—,Vî—,Si alloy composite. Materials Science & Science & Properties, Microstructure and Processing, 2000, 278, 5-15.	5.6	41
223	Abrasive wear behavior of TiB2 particle-reinforced copper matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 282, 183-186.	5.6	163
224	Microstructural and mechanical characteristics of in situ metal matrix composites. Materials Science and Engineering Reports, 2000, 29, 49-113.	31.8	1,455
225	Abrasion resistance of stainless-steel composites reinforced with hard TiB2 particles. Composites Science and Technology, 2000, 60, 1141-1146.	7.8	105
226	The mechanical and thermal expansion behavior of an Al–Si alloy composite reinforced with potassium titanate whisker. Composites Science and Technology, 2000, 60, 2873-2880.	7.8	55
227	High temperature creep behavior of in-situ TiB2 particulate reinforced copper-based composite. Materials Science & Description of the Structural Materials: Properties, Microstructure and Processing, 2000, 284, 70-76.	5.6	57
228	In-situ Ti-TiB metal–matrix composite prepared by a reactive pressing process. Scripta Materialia, 2000, 42, 367-373.	5.2	181
229	Metallization of CVD diamond films by ion beam assisted deposition. Materials Chemistry and Physics, 2000, 62, 241-246.	4.0	7
230	Dry sliding wear of TiB2particle reinforced aluminium alloy composites. Materials Science and Technology, 2000, 16, 99-102.	1.6	34
231	Effect of interfacial reaction on tensile and creep behaviors of aluminum-borate-whisker-reinforced AA6061 composite. Journal of Materials Research, 2000, 15, 2714-2729.	2.6	15
232	Dynamic Mechanical Analysis of Low-Density Polyethylene with Glass Beads. Journal of Thermoplastic Composite Materials, 2000, 13, 12-20.	4.2	6
233	Effects of Filler Content and Size on Drop-Weight Dart Impact Fracture Behavior of Glass Bead-Filled Polypropylene Composites. Journal of Thermoplastic Composite Materials, 2000, 13, 241-250.	4.2	6
234	Tribological behaviour of SiC particle-reinforced copper matrix composites. Materials Letters, 2000, 43, 274-280.	2.6	200

#	Article	IF	CITATIONS
235	Properties of in situ Composites Based on Semiflexible Thermotropic Liquid Crystalline Copolyesteramide and Polyamide 66 Blends. Polymer Journal, 2000, 32, 907-914.	2.7	19
236	Measurement of thermal conductivity in diamond films using a simple scanning thermocouple technique. Diamond and Related Materials, 2000, 9, 1312-1319.	3.9	12
237	Compatibilizing effect of styrene–maleic anhydride copolymer on the properties of polyamideâ€6/liquid crystalline copolyester composites. Journal of Applied Polymer Science, 2000, 77, 1964-1974.	2.6	1
238	Dynamic Mechanical Analysis of Low-Density Polyethylene with Glass Beads. Journal of Thermoplastic Composite Materials, 2000, 13, 12-20.	4.2	3
239	Effects of Filler Content and Size on Drop-Weight Dart Impact Fracture Behavior of Glass Bead-Filled Polypropylene Composites. Journal of Thermoplastic Composite Materials, 2000, 13, 241-250.	4.2	0
240	Steady state creep deformation behaviour of SiC particle reinforced 2618 aluminium alloy based composites. Materials Science and Technology, 1999, 15, 429-436.	1.6	9
241	Static and cyclic creep behavior of <i>in situ</i> TiB ₂ particulate reinforced aluminum composite. Journal of Materials Research, 1999, 14, 4541-4550.	2.6	13
242	Tensile properties and morphology of PP/EPDM/glass bead ternary composites. Polymer Composites, 1999, 20, 413-422.	4.6	62
243	Mechanical and thermal behavior of poly(acrylonitrile-butadiene-styrene)/polycarbonate blends reinforced with potassium titanate whiskers. Polymer Composites, 1999, 20, 748-757.	4.6	12
244	Properties and morphology of polyamide 6 hybrid composites containing potassium titanate whisker and liquid crystalline copolyester. Polymer, 1999, 40, 1109-1117.	3.8	87
245	Preparation and properties of injection-moulded blends of poly(vinyl chloride) and liquid crystal copolyester. Polymer, 1999, 40, 2711-2718.	3.8	32
246	Influence of particle dispersion on the matrix ligament thickness of polymer blends. Polymer, 1999, 40, 2903-2915.	3.8	17
247	Compatibility and degradation of blends of poly(caprolactone)–poly(ethylene glycol) block copolymer and polypropylene. Polymer, 1999, 40, 3703-3710.	3.8	24
248	Microstructural and mechanical characteristics of compatibilized polypropylene hybrid composites containing potassium titanate whisker and liquid crystalline copolyester. Polymer, 1999, 40, 7275-7283.	3.8	71
249	Cyclic and static creep behavior of Al–Cu alloy composite reinforced with in-situ Al2O3 and TiB2 particulates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 264, 177-187.	5.6	21
250	Effects of pressure and temperature on the melt density and the melt flow rate of LDEP and glass bead-filled LDPE composite. Journal of Materials Processing Technology, 1999, 91, 167-171.	6.3	27
251	The performance of aluminium-matrix composites with nanometric particulate Si–N–C reinforcement. Composites Science and Technology, 1999, 59, 263-270.	7.8	35
252	The high-temperature creep behaviour of 2124 aluminium alloys with and without particulate and SiC-whisker reinforcement. Composites Science and Technology, 1999, 59, 737-747.	7.8	29

#	Article	IF	CITATIONS
253	High-temperature creep behaviour of powder-metallurgy aluminium composites reinforced with SiC particles of various sizes. Composites Science and Technology, 1999, 59, 1117-1125.	7.8	63
254	Wear behavior of in situ TiB2·Al2O3/Al and TiB2·Al2O3/Al–Cu composites. Composites Science and Technology, 1999, 59, 1341-1347.	7.8	41
255	Properties and abrasive wear of TiB 2 /Al-4%Cu composites produced by hot isostatic pressing. Composites Science and Technology, 1999, 59, 2005-2013.	7.8	99
256	Thermal stability of polycarbonate composites reinforced with potassium titanate whiskers: effect of coupling agent addition. Polymer Degradation and Stability, 1999, 66, 241-246.	5.8	32
257	Wear behavior of in situ Al-based composites containing TiB2, Al2O3, and Al3Ti particles. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30, 243-248.	2.2	44
258	Wear of al-based hybrid composites containing BN and SiC particulates. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30, 2551-2555.	2.2	37
259	Crystallization behavior of glass bead-filled low-density polyethylene composites. Journal of Applied Polymer Science, 1999, 71, 687-692.	2.6	14
260	Mechanical and thermal properties of polycarbonate composites reinforced with potassium titanate whiskers. Journal of Applied Polymer Science, 1999, 72, 501-508.	2.6	35
261	Composites based on maleated polypropylene and methyl cellulosic fiber: Mechanical and thermal properties. Journal of Applied Polymer Science, 1999, 72, 1647-1653.	2.6	35
262	Mechanical and thermal behavior of polycarbonate composites reinforced with aluminum borate whiskers. Journal of Applied Polymer Science, 1999, 73, 2247-2253.	2.6	20
263	Mechanical and thermal properties of poly(acrylonitrile-butadiene-styrene) copolymer reinforced with potassium titanate whiskers. Journal of Applied Polymer Science, 1999, 73, 2985-2991.	2.6	24
264	Properties of ternaryin situ polycarbonate/polybutylene terephthalate/liquid crystalline polymer composites. Journal of Applied Polymer Science, 1999, 74, 1827-1835.	2.6	25
265	Mechanical performance of ternaryin situ polycarbonate/poly(acrylonitrile-butadiene-styrene)/liquid crystalline polymer composites. Journal of Applied Polymer Science, 1999, 74, 2274-2282.	2.6	7
266	Effects of glass bead content and surface treatment on viscoelasticity of filled polypropylene/elastomer hybrid composites. Polymer International, 1999, 48, 1068-1072.	3.1	37
267	The dynamic mechanical response of Al2O3 and TiB2 particulate reinforced aluminum matrix composites produced by in-situ reaction. Materials Letters, 1999, 38, 39-44.	2.6	38
268	Sliding wear of stainless steel matrix composite reinforced with TiB2 particles. Materials Letters, 1999, 41, 153-158.	2.6	69
269	Corrosion and abrasive wear behaviour of laser consolidated plasma sprayed sic coating on Fe–15Cr–25Ni alloy. Surface Engineering, 1999, 15, 490-494.	2.2	3
270	Static and cyclic creep behaviour of SiC whisker reinforced aluminium composite. Materials Science and Technology, 1999, 15, 666-672.	1.6	5

#	Article	lF	Citations
271	Mechanical Properties of Glass Beads Filled Polypropylene Composites. Key Engineering Materials, 1998, 145-149, 823-828.	0.4	4
272	Tensile deformation mechanisms of the blends of polycarbonate with poly(methyl methacrylate). European Polymer Journal, 1998, 34, 1143-1149.	5 . 4	46
273	Fracture toughening behavior of elastomer modified polyphenylene ether/polyamide blends. European Polymer Journal, 1998, 34, 1565-1570.	5.4	23
274	Impact toughening behaviour of quaternary PP/HDPE/EPDM/EP blends. European Polymer Journal, 1998, 34, 755-760.	5 . 4	37
275	Application of Ion Beam Enhanced Deposition to Metallization of CVD Diamond Films. Physica Status Solidi A, 1998, 169, R5-R6.	1.7	3
276	Rheology and impact characteristics of compatibilized polypropylene-liquid crystalline polymer composites. Journal of Applied Polymer Science, 1998, 67, 521-530.	2.6	24
277	Synthesis and properties of poly(aryl ether sulfone)s containing the phthalazinone moiety. Journal of Applied Polymer Science, 1998, 68, 137-143.	2.6	70
278	Impact and tensile properties of SEBS copolymer compatibilized PS/HDPE blends. Journal of Applied Polymer Science, 1998, 68, 1099-1108.	2.6	51
279	Morphology and performance of potassium titanate whisker-reinforced polypropylene composites. Journal of Applied Polymer Science, 1998, 70, 431-439.	2.6	27
280	Impact-modified blends of compatibilized polyamide-6 with liquid crystalline copolyester. Journal of Applied Polymer Science, 1998, 70, 1611-1619.	2.6	12
281	Creep and rupture properties of an austenitic Fe-30Mn-9Al-1C alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 29, 299-306.	2.2	12
282	Morphology and tensile properties of glass bead filled low density polyethylene composites. Polymer Testing, 1998, 16, 529-548.	4.8	33
283	Fracture toughness of elastomer-modified polypropylene. Polymer Testing, 1998, 16, 563-574.	4.8	35
284	Rheology and morphology of compatibilized polyamide 6 blends containing liquid crystalline copolyesters. Polymer, 1998, 39, 99-107.	3.8	67
285	Morphology, rheological and thermal properties of the melt blends of poly(phthalazinone ether) Tj ETQq $1\ 1\ 0.78$	4314 rgBT	i /Qyerlock 1
286	Influence of particle dispersion on the matrix ligament thickness of polymer blends. 1. The configuration of well-dispersed particles versus simple cubic lattice. Polymer, 1998, 39, 4433-4436.	3.8	25
287	Performance of potassium titanate whisker reinforced polyamide-6 composites. Polymer, 1998, 39, 5461-5466.	3.8	69
288	Creep behavior of in-situ Al 2 O 3 and TiB 2 particulates mixture-reinforced aluminum composites. Materials Science & Department of the Composite of the Compos	5.6	34

#	Article	IF	CITATIONS
289	Morphology and dynamic mechanical properties of glass beads filled low density polyethylene composites. Journal of Materials Processing Technology, 1998, 79, 59-65.	6.3	56
290	Creep behavior of a β′(NiAl) precipitation strengthened ferritic Fe–Cr–Ni–Al alloy. Acta Materialia, 1998, 46, 2969-2976.	7.9	62
291	Effects of processing conditions on the mechanical performance of maleic anhydride compatibilized in-situ composites of polypropylene with liquid crystalline polymer. Polymer Composites, 1998, 19, 1-10.	4.6	27
292	Degradation behavior of poly (caprolactone)-poly(ethylene glycol) block copolymer/low-density polyethylene blends. Polymer Engineering and Science, 1998, 38, 392-402.	3.1	17
293	Effect of plasma immersion ion implantation on creep and rupture properties of ferritic Fe–24Cr–4Al stainless alloy. Surface and Coatings Technology, 1998, 106, 262-267.	4.8	1
294	Wear behaviour of an Al–12% Si alloy reinforced with a low volume fraction of SiC particles. Composites Science and Technology, 1998, 57, 1551-1558.	7.8	66
295	Melt Flow Properties of LDPE/HDPE Blends in Capillary Extrusion. International Polymer Processing, 1998, 13, 46-49.	0.5	5
296	Mechanical properties and impact toughness of talc-filled ?-crystalline phase polypropylene composites. Journal of Vinyl and Additive Technology, 1997, 3, 89-95.	3.4	28
297	A Study of the Elastic Storage Moduli of Glass Bead Filled LDPE Composites. Key Engineering Materials, 1997, 145-149, 817-822.	0.4	4
298	Solidification microstructure and creep rupture behaviour of electron beam welded austenitic Fe-28M-6Al-1C alloy. Materials Science and Technology, 1997, 13, 251-256.	1.6	5
299	Cyclic deformation behaviour of ferritic Fe-19Cr-4Ni-2Al alloy at elevated temperatures. Materials Science and Technology, 1997, 13, 1023-1026.	1.6	8
300	Corrosion behaviour of laser melted plasma sprayed coatings on 12% chromium dual phase steel. Materials Science and Technology, 1997, 13, 56-60.	1.6	19
301	Tensile Deformation Behavior and Work Hardening Mechanism of Fe–28Mn–9Al–0.4C and Fe–28Mn–9Al–1C Alloys. Materials Transactions, JIM, 1997, 38, 112-118.	0.9	26
302	Serrated flow in Fe-28Mn-9Al-xC alloys in a temperature range of 573–873 K. Scripta Materialia, 1997, 36, 317-321.	5.2	6
303	Title is missing!. Journal of Materials Science, 1997, 32, 2163-2170.	3.7	8
304	Title is missing!. Journal of Materials Science, 1997, 32, 4613-4617.	3.7	12
305	Impact and tensile dilatometric characteristics of polypropylene/high impact polypropylene blends. Polymer Bulletin, 1997, 38, 721-727.	3.3	5
306	In Situ ceramic particle-reinforced aluminum matrix composites fabricated by reaction pressing in the TiO2 (Ti)-Al-B (B2O3) systems. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1997, 28, 1931-1942.	2.2	98

#	Article	IF	Citations
307	Wear behavior of As-cast ZnAl27/SiC particulate metal-matrix composites under lubricated sliding condition. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1997, 28, 1951-1955.	2.2	37
308	Dislocation/particle interactions in β′(NiAl) precipitation strengthened ferritic Fe-19Cr-4Ni-2Al alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1997, 28, 1095-1099.	2.2	7
309	Creep and low-cycle fatigue behavior of ferritic Fe-24Cr-4Al alloy in the dynamic strain aging regime: Effect of aluminum addition. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1997, 28, 1347-1355.	2.2	24
310	Mechanical behavior of CaCO3 particulate-filled ?-crystalline phase polypropylene composites. Polymer Engineering and Science, 1997, 37, 166-172.	3.1	107
311	High temperature creep behavior of nanometric Si3N4 particulate reinforced aluminium composite. Materials Science & Depriment of the Composite	5.6	45
312	Properties of electron beam welded SAF 2205 duplex stainless steel. Journal of Materials Processing Technology, 1997, 63, 770-775.	6.3	47
313	Laser surface alloying of ferritic Fe-40Cr alloy with ruthenium. Surface and Coatings Technology, 1997, 90, 203-209.	4.8	21
314	The high-temperature creep behaviour of aluminium-matrix composites reinforced with SiC, Al2O3 and TiB2 particles. Composites Science and Technology, 1997, 57, 697-702.	7.8	42
315	Morphology and mechanical characteristics of compatibilized polyamide 6-liquid crystalline polymer composites. Polymer, 1997, 38, 4609-4615.	3.8	65
316	The Effect of Compatibilization of Maleated Polypropylene on a Blend of Polyamide-6 and Liquid Crystalline Copolyester. Polymer International, 1997, 42, 209-217.	3.1	39
317	Non-isothermal crystallization kinetics of calcium carbonate-filled \hat{l}^2 -crystalline phase polypropylene composites. Polymer International, 1997, 44, 95-103.	3.1	75
318	Crystallization kinetics of compatibilized blends of a liquid crystalline polymer with polypropylene. Journal of Applied Polymer Science, 1997, 64, 707-715.	2.6	30
319	Synthesis of novel poly(phthalazinone ether sulfone ketone)s and improvement of their melt flow properties. Journal of Applied Polymer Science, 1997, 66, 1425-1432.	2.6	78
320	Fe–Cr–Ni–Mo–Ru ALLOYS PRODUCED BY LASER SURFACE ALLOYING. Surface Engineering, 1996, 12, 246-250.	2.2	3
321	Dependence of creep crack propagation on columnar grain orientation in cast HK40 tube. Materials Science and Technology, 1996, 12, 513-517.	1.6	2
322	Wear behavior of aluminum-based metal matrix composites reinforced with a preform of aluminosilicate fiber. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27, 2385-2389.	2.2	26
323	Effects of nitrogen implantation on low cycle fatigue behavior of ferritic Fe-24Cr-4Al stainless alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27, 2663-2672.	2.2	3
324	Morphological behaviour and instrumented dart impact properties of \hat{l}^2 -crystalline-phase polypropylene. Polymer, 1996, 37, 2309-2316.	3.8	162

#	Article	IF	Citations
325	Performance of laser-consolidated plasma-spray coatings on Fe-28Mn-7A1-1C alloy. Thin Solid Films, 1996, 274, 95-100.	1.8	9
326	Nanometric Si3N4 particulate-reinforced aluminum composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 219, 229-231.	5.6	120
327	Mechanical and wear behavior of an Al/Si alloy metal-matrix composite reinforced with aluminosilicate fiber. Composites Science and Technology, 1996, 56, 1261-1270.	7.8	58
328	Mechanical properties of injection moulded blends of polypropylene with thermotropic liquid crystalline polymer. Journal of Materials Science, 1996, 31, 479-484.	3.7	61
329	Mechanical behavior of injection molded ?-crystalline phase polypropylene. Polymer Engineering and Science, 1996, 36, 100-105.	3.1	150
330	Structural properties and impact fracture behavior of injection molded blends of liquid crystalline copolyester and modified poly(phenylene oxide). Polymer Engineering and Science, 1996, 36, 797-806.	3.1	8
331	Fracture toughening behavior and mechanical properties of polyphenylene oxide/high-impact polystyrene blends. Polymer Engineering and Science, 1996, 36, 2626-2633.	3.1	16
332	Microstructural characteristics and creep rupture behavior of electron beam and laser welded AISI 316L stainless steel. Journal of Nuclear Materials, 1995, 227, 24-31.	2.7	29
333	Laser surface alloying of Incoloy 800H with silicon carbide: microstructural aspects. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1995, 201, L5-L7.	5.6	9
334	Structure and mechanical properties of the extruded blends of a liquid crystalline polymer with polypropylene. Journal of Materials Science, 1995, 30, 353-360.	3.7	33
335	Low cycle fatigue behavior of an austenitic Feî—,25Mnî—,8Alî—,1C alloy containing grain boundary precipitates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1995, 203, L13-L16.	5.6	5
336	Impact fracture toughness of \hat{l}^2 -form polypropylene. Scripta Metallurgica Et Materialia, 1995, 33, 503-508.	1.0	93
337	Low cycle fatigue behavior of ferritic Fe-24Cr-4Al alloy at high temperatures. Scripta Metallurgica Et Materialia, 1995, 32, 1589-1593.	1.0	9
338	Effect of nitrogen implantation on fatigue crack initiation in ferritic Fe-24Cr-4Al alloy. Scripta Metallurgica Et Materialia, 1995, 32, 535-540.	1.0	6
339	Some aspects of electron beam welded and laser welded ferritic Fe-22Cr-3Mo-5Ni-0.3Ru alloy. Journal of Materials Science, 1994, 29, 2648-2654.	3.7	2
340	Abnormal creep behavior of ferritic Feî—,24Crî—,4Al stainless steel. Scripta Metallurgica Et Materialia, 1994, 30, 1397-1402.	1.0	11
341	Corrosion behavior of laser consolidated chromium and molybdenum plasma spray coatings on Fe-28Mn-7Al-1C alloy. Scripta Metallurgica Et Materialia, 1994, 31, 835-839.	1.0	14
342	Corrosion behavior of boron- and phosphorus-implanted Fe-40Cr alloy in reducing acid solutions. Applied Surface Science, 1993, 64, 127-132.	6.1	4

#	Article	IF	CITATIONS
343	Laser surface melting of an austenitic Fe-26Mn-7Al-0.9C alloy. Surface and Coatings Technology, 1993, 57, 139-144.	4.8	3
344	Properties of electron-beam-welded and laser-welded austenitic Fe-28Mn-5Al-1C alloy. Journal of Materials Science, 1993, 28, 2808-2814.	3.7	13
345	SEM and EDX analyses of the scales formed on Fe—24Cr—5V—Pd and Fe—24Cr—5Mo—Pd alloy system X-Ray Spectrometry, 1993, 22, 172-177.	is 1.4	1
346	Oxidation of Feî—,25Crî—,4Alî—,Pd and Feî—,25Crî—,4Alî—,Ru alloys. Materials Characterization, 1993, 30, 235-24	14.4	0
347	AES and SIMS investigations of the oxide films on Fe-40Cr-Ru alloys. Journal of Materials Science, 1992, 27, 1818-1826.	3.7	10
348	Surface oxidation of Fe-40Cr-Pd, Fe-24Cr-5Mo-Pd, Pd-implanted Fe-40Cr and ion beam mixed Pd-FeCr alloys. Applied Surface Science, 1992, 55, 57-63.	6.1	3
349	Auger characterization of the surface oxidation of austenitic Fe-26Mn-7Al-0.9C alloy. Applied Surface Science, 1991, 47, 311-321.	6.1	12
350	Aqueous corrosion and oxidation behavior of the Pd-FeCr surface alloys produced by ion beam mixing. Applied Surface Science, 1991, 51, 157-164.	6.1	9
351	Electron microscope and raman characterization of the surface oxides formed on the Feî—,Cr alloys at 400–850°C. Materials Characterization, 1991, 26, 29-44.	4.4	16
352	Oxidation characteristics of some Fe-40Crî—,Pd and Fe-40Crî—,Ru alloys in air at 900°C. Materials Characterization, 1991, 27, 175-182.	4.4	2
353	Transmission electron microscope observations of the dislocation substructures induced by cyclic deformation of the ferritic Feî—,25Crî—,(2–4)Al and Feî—,19Crî—,4Niî—,2Al alloys. Materials Characterization, 1926, 109-121.	9914	6
354	SEM, EDX and XRD studies of the scales formed on the Fe-Mn-Al-C system in oxidizing-sulphidizing environments. X-Ray Spectrometry, 1991, 20, 225-238.	1.4	9
355	Mechanical Properties and Aqueous Corrosion Behaviour of the Ferritic Fe-Cr-V Alloys ISIJ International, 1991, 31, 738-743.	1.4	3
356	Electron microscope observations of phase decompositions in an austenitic Fe-8.7Al-29.7Mn-1.04C alloy. Materials Characterization, 1990, 24, 275-292.	4.4	48
357	Microstructural aspects of the scales formed on FeMnAl and FeMnAlCr alloys in SO2/O2 atmospheres at elevated temperatures. Materials Characterization, 1990, 24, 3-26.	4.4	4
358	Dislocation microstructures in fatigued Fe–30 Mn–10 Al–0.4 C alloy. Physica Status Solidi A, 1990, 121, 119-127.	1.7	7
359	Auger studies of the effect of Mo, V and Pd additions on the oxidation characteristics of Fe-24Cr alloy. Applied Surface Science, 1990, 44, 179-183.	6.1	6
360	A surface study of the passivation of Fe-Cr-Co magnet alloys in sulphuric acid solution. Applied Surface Science, 1990, 45, 141-149.	6.1	4

#	Article	IF	CITATIONS
361	Electrochemical and surface analysis of the Fe-Cr-Ru system in non-oxidizing acid solutions. Applied Surface Science, 1990, 44, 7-15.	6.1	17
362	Self-passivation of Fe-Cr-PGM alloys in reducing acids studied by electrochemical and electron spectroscopic techniques. Applied Surface Science, 1990, 45, 301-318.	6.1	26
363	Corrosion behaviour of the Fe-Cr-V-Ru system in reducing acid solution ISIJ International, 1990, 30, 397-402.	1.4	5
364	TEM studies of strain-induced martensitic formation in fatigued Fe-18Mn alloy. Journal of Materials Science, 1989, 24, 1257-1262.	3.7	1
365	Microstructural aspects of low-pressure plasma-sprayed CoNiCrAlY coating on Hastelloy X. Metallography, 1989, 22, 57-67.	0.4	4
366	Microstructural corrosion behavior of austenitic Fe-21Mn-2.5Al-0.04C alloy in oxidizing-sulfidizing environments. Metallography, 1989, 23, 87-100.	0.4	1
367	X-ray photoelectron spectroscopy and electrochemical characterization of a FeCrMoNiRu alloy in 0.5 M HCl solution. Materials and Corrosion - Werkstoffe Und Korrosion, 1989, 40, 729-734.	1.5	8
368	AES characterization of the oxides formed on the Fe-40Cr-Pd and Pd-implanted Fe-40Cr alloys at $500 \hat{A}^{\circ}$ C. Applied Surface Science, 1989, 40, 1-7.	6.1	10
369	Electrochemical and surface characterization of the passive film on Fe-Cr-Pd alloys. Surface and Coatings Technology, 1989, 38, 325-338.	4.8	10
370	Applications of transmission electron microscopy to microstructural studies of epitaxial thin films. Surface and Coatings Technology, 1989, 37, 203-216.	4.8	2
371	Investigations of the breakdown of passive films on Fe-25Cr-4Al alloy by slow rate straining. Surface and Coatings Technology, 1988, 35, 343-350.	4.8	0
372	Cyclic deformation of duplex Fe-30Mn-10Al-0.4C alloy at room temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1988, 102, 49-55.	5.6	10
373	Transmission electron microscopy observations of strain-induced martensitic formation in fatigued Feî—,21Mnî—,2.5Al alloy. Materials Science & Degineering A: Structural Materials: Properties, Microstructure and Processing, 1988, 102, 125-130.	5.6	14
374	Microstructural development in a duplex FeAl10Mn29C0.4 alloy. Metallography, 1988, 21, 199-206.	0.4	8
375	Some aspects of the dislocation microstructures in fatigued Feî—,Crî—,Al alloys. Materials Science and Engineering, 1988, 100, 79-84.	0.1	17
376	A microstructural characterization of scale formed on austenitic Fe–29.7Mn–8.7Al–1.04C and duplex Fe–29Mn–10Al–0.4C alloys in oxidizingâ€sulfidizing environments. Steel Research = Archiv FÃ⅓r Das EisenhÃ⅓ttenwesen, 1988, 59, 499-502.	0.3	3
377	High Temperature Oxidation of the Austenitic Fe–9Al–30Mn–1.0C and Duplex Fe–10Al–29Mn–0.4C Alloys. Transactions of the Japan Institute of Metals, 1987, 28, 671-678.	0.5	13
378	Cyclic softening of age hardened Feî—'Mnî—'Alî—'C alloys containing coherent precipitates. Scripta Metallurgica, 1987, 21, 1319-1322.	1.2	18

#	Article	IF	CITATIONS
379	Transmission electron microscopy investigation of the transient oxides formed on the aluminide coating on Inconel 625 superalloy. Surface and Coatings Technology, 1987, 30, 207-214.	4.8	7
380	Cyclic stress-strain behaviour of austenitic Fe-29.7Mn-8.7A1-1.04C alloy at room temperature. Materials Science and Engineering, 1987, 94, 195-202.	0.1	30
381	Transmission electron microscopy studies of the dislocation microstructures in fatigued Fe-8.7Al-29.7Mn-1.04C alloy. Materials Science and Engineering, 1987, 91, 161-167.	0.1	26
382	Transmission electron microscopy study of fatigue deformation in Fe-25Cr-4Al alloy. Materials Science and Engineering, 1987, 95, 145-150.	0.1	5
383	Some aspects of the plasma-sprayed thermal barrier coating on Hastelloy X. Surface and Coatings Technology, 1987, 31, 289-295.	4.8	4
384	TEM investigations of the tungsten silicide films on silicon. Materials Research Bulletin, 1987, 22, 841-847.	5.2	4
385	Stress corrosion cracking of the austenitic Fe-Al-Mn alloy in chloride environment. Materials and Corrosion - Werkstoffe Und Korrosion, 1986, 37, 444-447.	1.5	19
386	Some aspects of the Aluminide coating on Fe-18Cr alloy. Materials and Corrosion - Werkstoffe Und Korrosion, 1986, 37, 591-595.	1.5	13
387	Aqueous corrosion properties of austenitic Fe-8.7Al-29.7Mn-1.04C alloy. Surface and Coatings Technology, 1986, 28, 181-186.	4.8	39
388	Stress corrosion cracking behaviour of the duplex Fe-10Al-29Mn-0.4C alloy in 20% NaCl solution at $100\ddot{i}_{2}\frac{1}{2}$ C. Journal of Materials Science, 1986, 21, 1166-1170.	3.7	33
389	The microstructure and stress corrosion cracking behaviour of precipitation-hardened Feî—,8.7Alî—,29.7Mnî—,1.04C alloy in 20% NaCl solution. Materials Science and Engineering, 1986, 80, 203-211.	0.1	42
390	TEM study of the passive film on iron-chromium alloys. Journal of Materials Science Letters, 1985, 4, 6-8.	0.5	4
391	Transmission electron microscopy study of the passive films on nickel. Journal of Materials Science Letters, 1984, 3, 845-846.	0.5	0
392	Effect of Temperature on Pitting and Crevice Corrosion of Nickel in NaCl Solutions. Transactions of the Japan Institute of Metals, 1984, 25, 361-366.	0.5	1
393	Laser raman spectroscopic studies of the surface oxides formed on iron chromium alloys at elevated temperatures. Materials Research Bulletin, 1983, 18, 157-165.	5.2	43
394	Auger and A–C impedance studies of the R–F sputter deposited Fe2O3 films. Materials Research Bulletin, 1983, 18, 421-427.	5.2	1
395	EAS studies of the oxides formed on iron-chromium alloys at 400°C. Applications of Surface Science, 1983, 14, 297-306.	1.0	32
396	Electron and Ion Spectroscopic Studies of the Passive Film on Iron―Chromium Alloys. Journal of the Electrochemical Society, 1982, 129, 1662-1668.	2.9	61

#	Article	IF	CITATIONS
397	Discussion of "ESCA and SIMS Studies of the Passive Film on Iron―[S. C. Tjong and E. Yeager (pp.) Tj ETQq1 I	l 0.78431 2.9	4 _f gBT /Ove
398	Closure to "Discussion of â€~ESCA and SIMS Studies of the Passive Film on Iron' [S. C. Tjong and E. Yeager (pp. 2251–2254, Vol. 128, No. 10)]― Journal of the Electrochemical Society, 1982, 129, 1276-1277.	2.9	3
399	SIMS / XPS studies of the passive film on nickel. Materials Research Bulletin, 1982, 17, 1297-1304.	5.2	9
400	ESCA and SIMS analysis of the composition of passive films formed on E-brite stainless steel. Applications of Surface Science, 1981, 9, 92-97.	1.0	5
401	ESCA and SIMS Studies of the Passive Film on Iron. Journal of the Electrochemical Society, 1981, 128, 2251-2254.	2.9	56
402	The structure and properties of the vanadium chromium silicon alloys in the composition range V3Si to Cr3Si. Journal of Applied Crystallography, 1979, 12, 473-475.	4.5	6
403	Carbon Nanotube–Metal Nanocomposites. , 0, , 43-87.		1
404	Physical Properties of Carbon Nanotube–Metal Nanocomposites. , 0, , 89-102.		0
405	Mechanical Characteristics of Carbon Nanotube–Metal Nanocomposites. , 0, , 103-130.		2
406	Carbon Nanotube–Ceramic Nanocomposites. , 0, , 131-168.		0
407	Physical Properties of Carbon Nanotube–Ceramic Nanocomposites. , 0, , 169-184.		0
408	Mechanical Properties of Carbon Nanotube–Ceramic Nanocomposites., 0,, 185-214.		3
409	Isothermal Dielectric Relaxations of Poly(vinylidene Fluoride) Filled with Silicon Carbide Nanoparticles. Advanced Materials Research, 0, 279, 49-53.	0.3	2
410	Electrical Permittivity of Polyvinylidene Fluoride Nanocomposites Filled with Organoclay and Graphite Nanoplatelets: Compared and Contrasted. Key Engineering Materials, 0, 495, 5-8.	0.4	2