
## Qiang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6403584/publications.pdf Version: 2024-02-01



ΟΙΔΝΟ ΖΗΔΝΟ

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions.<br>Atmospheric Chemistry and Physics, 2018, 18, 14095-14111.                                                                  | 4.9  | 1,613     |
| 2  | Health and climate change: policy responses to protect public health. Lancet, The, 2015, 386, 1861-1914.                                                                                                                    | 13.7 | 1,311     |
| 3  | Drivers of improved PM <sub>2.5</sub> air quality in China from 2013 to 2017. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24463-24469.                                      | 7.1  | 1,193     |
| 4  | Reduced carbon emission estimates from fossil fuel combustion and cement production in China.<br>Nature, 2015, 524, 335-338.                                                                                                | 27.8 | 1,185     |
| 5  | MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmospheric Chemistry and Physics, 2017, 17, 935-963.                                       | 4.9  | 1,069     |
| 6  | Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community<br>Emissions Data System (CEDS). Geoscientific Model Development, 2018, 11, 369-408.                                       | 3.6  | 1,058     |
| 7  | Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proceedings of the<br>National Academy of Sciences of the United States of America, 2019, 116, 422-427.                                         | 7.1  | 990       |
| 8  | Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China.<br>Science Advances, 2016, 2, e1601530.                                                                                    | 10.3 | 820       |
| 9  | Transboundary health impacts of transported global air pollution and international trade. Nature, 2017, 543, 705-709.                                                                                                       | 27.8 | 737       |
| 10 | Anthropogenic emission inventories in China: a review. National Science Review, 2017, 4, 834-866.                                                                                                                           | 9.5  | 580       |
| 11 | Cleaning China's air. Nature, 2012, 484, 161-162.                                                                                                                                                                           | 27.8 | 561       |
| 12 | A two-pollutant strategy for improving ozone and particulate air quality in China. Nature Geoscience, 2019, 12, 906-910.                                                                                                    | 12.9 | 493       |
| 13 | Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target. Nature, 2019,<br>572, 373-377.                                                                                                    | 27.8 | 484       |
| 14 | Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic.<br>Nature Communications, 2020, 11, 5172.                                                                                   | 12.8 | 420       |
| 15 | China's international trade and air pollution in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1736-1741.                                                  | 7.1  | 391       |
| 16 | Air pollutant emissions from Chinese households: A major and underappreciated ambient pollution<br>source. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113,<br>7756-7761.        | 7.1  | 378       |
| 17 | Ammonia emission control in China would mitigate haze pollution and nitrogen deposition, but<br>worsen acid rain. Proceedings of the National Academy of Sciences of the United States of America,<br>2019, 116, 7760-7765. | 7.1  | 308       |
| 18 | Effects of meteorology and secondary particle formation on visibility during heavy haze events in<br>Beijing, China. Science of the Total Environment, 2015, 502, 578-584.                                                  | 8.0  | 288       |

| #  | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Characteristics of heavy aerosol pollution during the 2012–2013 winter in Beijing, China. Atmospheric<br>Environment, 2014, 88, 83-89.                                                                                                                    | 4.1  | 283       |
| 20 | High-resolution ammonia emissions inventories in China from 1980 to 2012. Atmospheric Chemistry and Physics, 2016, 16, 2043-2058.                                                                                                                         | 4.9  | 281       |
| 21 | Dominant role of emission reduction in PM <sub>2.5</sub> air quality<br>improvement in Beijing during 2013–2017: aAmodel-based decomposition analysis. Atmospheric Chemistry<br>and Physics, 2019, 19, 6125-6146.                                         | 4.9  | 280       |
| 22 | Persistent growth of anthropogenic non-methane volatile organic compound (NMVOC) emissions in<br>China during 1990–2017: drivers, speciation and ozone formation potential. Atmospheric Chemistry<br>and Physics, 2019, 19, 8897-8913.                    | 4.9  | 267       |
| 23 | Fossil Fuel Combustion-Related Emissions Dominate Atmospheric Ammonia Sources during Severe Haze<br>Episodes: Evidence from <sup>15</sup> N-Stable Isotope in Size-Resolved Aerosol Ammonium.<br>Environmental Science & Technology, 2016, 50, 8049-8056. | 10.0 | 261       |
| 24 | Exploring 2016–2017 surface ozone pollution over China: source contributions and meteorological influences. Atmospheric Chemistry and Physics, 2019, 19, 8339-8361.                                                                                       | 4.9  | 244       |
| 25 | Impacts of climate change on future air quality and human health in China. Proceedings of the<br>National Academy of Sciences of the United States of America, 2019, 116, 17193-17200.                                                                    | 7.1  | 219       |
| 26 | Targeted emission reductions from global super-polluting power plant units. Nature Sustainability, 2018, 1, 59-68.                                                                                                                                        | 23.7 | 215       |
| 27 | Air quality improvements and health benefits from China's clean air action since 2013. Environmental<br>Research Letters, 2017, 12, 114020.                                                                                                               | 5.2  | 213       |
| 28 | Spatiotemporal continuous estimates of PM2.5 concentrations in China, 2000–2016: A machine<br>learning method with inputs from satellites, chemical transport model, and ground observations.<br>Environment International, 2019, 123, 345-357.           | 10.0 | 207       |
| 29 | Drivers of PM2.5 air pollution deaths in China 2002–2017. Nature Geoscience, 2021, 14, 645-650.                                                                                                                                                           | 12.9 | 197       |
| 30 | A possible pathway for rapid growth of sulfate during haze days in China. Atmospheric Chemistry and Physics, 2017, 17, 3301-3316.                                                                                                                         | 4.9  | 193       |
| 31 | Changes in China's anthropogenic emissions and air quality during the COVID-19 pandemic in 2020.<br>Earth System Science Data, 2021, 13, 2895-2907.                                                                                                       | 9.9  | 176       |
| 32 | Rapid transition in winter aerosol composition in Beijing from 2014 to 2017: response to clean air actions. Atmospheric Chemistry and Physics, 2019, 19, 11485-11499.                                                                                     | 4.9  | 167       |
| 33 | Understanding of regional air pollution over China using CMAQ, part I performance evaluation and seasonal variation. Atmospheric Environment, 2010, 44, 2415-2426.                                                                                        | 4.1  | 156       |
| 34 | Source contributions of urban PM2.5 in the Beijing–Tianjin–Hebei region: Changes between 2006 and<br>2013 and relative impacts of emissions and meteorology. Atmospheric Environment, 2015, 123, 229-239.                                                 | 4.1  | 152       |
| 35 | Premature Mortality Attributable to Particulate Matter in China: Source Contributions and Responses to Reductions. Environmental Science & amp; Technology, 2017, 51, 9950-9959.                                                                          | 10.0 | 152       |
| 36 | Identifying Ammonia Hotspots in China Using a National Observation Network. Environmental Science<br>& Technology, 2018, 52, 3926-3934.                                                                                                                   | 10.0 | 146       |

| #  | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Rapid improvement of PM2.5 pollution and associated health benefits in China during 2013–2017.<br>Science China Earth Sciences, 2019, 62, 1847-1856.                                                                                          | 5.2  | 146       |
| 38 | Nitrate-driven urban haze pollution during summertime over the North China Plain. Atmospheric Chemistry and Physics, 2018, 18, 5293-5306.                                                                                                     | 4.9  | 143       |
| 39 | Control of particulate nitrate air pollution in China. Nature Geoscience, 2021, 14, 389-395.                                                                                                                                                  | 12.9 | 139       |
| 40 | Widespread and persistent ozone pollution in eastern China during the non-winter season of 2015: observations and source attributions. Atmospheric Chemistry and Physics, 2017, 17, 2759-2774.                                                | 4.9  | 138       |
| 41 | Ozone pollution in the North China Plain spreading into the late-winter haze season. Proceedings of the United States of America, 2021, 118, .                                                                                                | 7.1  | 138       |
| 42 | Satellite-based estimates of decline and rebound in China's CO <sub>2</sub> emissions during<br>COVID-19 pandemic. Science Advances, 2020, 6, .                                                                                               | 10.3 | 136       |
| 43 | Effect of changing NO <sub><i>x</i></sub><br>lifetime on the seasonality and long-term trends of satellite-observed tropospheric<br>NO <sub>2</sub> columns over China. Atmospheric Chemistry and Physics,<br>2020. 20. 1483-1495.            | 4.9  | 135       |
| 44 | Economic footprint of California wildfires in 2018. Nature Sustainability, 2021, 4, 252-260.                                                                                                                                                  | 23.7 | 131       |
| 45 | Current Emissions and Future Mitigation Pathways of Coal-Fired Power Plants in China from 2010 to 2030. Environmental Science & Technology, 2018, 52, 12905-12914.                                                                            | 10.0 | 122       |
| 46 | Rapid SO <sub>2</sub> emission reductions significantly increase<br>tropospheric ammonia concentrations over the North China Plain. Atmospheric Chemistry and<br>Physics, 2018, 18, 17933-17943.                                              | 4.9  | 121       |
| 47 | Source attribution of particulate matter pollution over North China with the adjoint method.<br>Environmental Research Letters, 2015, 10, 084011.                                                                                             | 5.2  | 117       |
| 48 | Chemical composition of ambient PM <sub>2. 5</sub> over China and<br>relationship to precursor emissions during 2005–2012. Atmospheric Chemistry and Physics, 2017, 17,<br>9187-9203.                                                         | 4.9  | 117       |
| 49 | Dynamic projection of anthropogenic emissions in China: methodology and 2015–2050 emission pathways under a range of socio-economic, climate policy, and pollution control scenarios. Atmospheric Chemistry and Physics, 2020, 20, 5729-5757. | 4.9  | 117       |
| 50 | Examining Air Pollution in China Using Production- And Consumption-Based Emissions Accounting Approaches. Environmental Science & Technology, 2014, 48, 14139-14147.                                                                          | 10.0 | 114       |
| 51 | Satellite remote sensing of changes in NO x emissions over China during 1996–2010. Science Bulletin, 2012, 57, 2857-2864.                                                                                                                     | 1.7  | 113       |
| 52 | Tracking PM <sub>2.5</sub> and O <sub>3</sub> Pollution and the Related Health Burden in China 2013–2020. Environmental Science & Technology, 2022, 56, 6922-6932.                                                                            | 10.0 | 113       |
| 53 | Impact of China's Air Pollution Prevention and Control Action Plan on PM2.5 chemical composition over eastern China. Science China Earth Sciences, 2019, 62, 1872-1884.                                                                       | 5.2  | 105       |
| 54 | The underappreciated role of agricultural soil nitrogen oxide emissions in ozone pollution regulation in North China. Nature Communications, 2021, 12, 5021.                                                                                  | 12.8 | 98        |

| #  | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Anthropogenic fugitive, combustion and industrial dust is a significant, underrepresented fine<br>particulate matter source in global atmospheric models. Environmental Research Letters, 2017, 12,<br>044018.                                        | 5.2  | 91        |
| 56 | Geophysical constraints on the reliability of solar and wind power worldwide. Nature Communications, 2021, 12, 6146.                                                                                                                                  | 12.8 | 90        |
| 57 | Revealing the Hidden Health Costs Embodied in Chinese Exports. Environmental Science &<br>Technology, 2015, 49, 4381-4388.                                                                                                                            | 10.0 | 88        |
| 58 | Resolution dependence of uncertainties in gridded emission inventories: a case study in Hebei, China.<br>Atmospheric Chemistry and Physics, 2017, 17, 921-933.                                                                                        | 4.9  | 88        |
| 59 | Potential sources of nitrous acid (HONO) and their impacts on ozone: A WRFâ€Chem study in a polluted subtropical region. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3645-3662.                                                        | 3.3  | 84        |
| 60 | Emissions and health impacts from global shipping embodied in US–China bilateral trade. Nature<br>Sustainability, 2019, 2, 1027-1033.                                                                                                                 | 23.7 | 78        |
| 61 | Underreported coal in statistics: A survey-based solid fuel consumption and emission inventory for the rural residential sector in China. Applied Energy, 2019, 235, 1169-1182.                                                                       | 10.1 | 77        |
| 62 | Response of aerosol chemistry to clean air action in Beijing, China: Insights from two-year ACSM measurements and model simulations. Environmental Pollution, 2019, 255, 113345.                                                                      | 7.5  | 74        |
| 63 | Air quality and health benefits of China's emission control policies on coal-fired power plants during 2005–2020. Environmental Research Letters, 2019, 14, 094016.                                                                                   | 5.2  | 73        |
| 64 | Contribution of Hydroxymethane Sulfonate to Ambient Particulate Matter: A Potential Explanation<br>for High Particulate Sulfur During Severe Winter Haze in Beijing. Geophysical Research Letters, 2018,<br>45, 11,969.                               | 4.0  | 72        |
| 65 | Measuring the morphology and density of internally mixed black carbon with SP2 and VTDMA: new insight into the absorption enhancement of black carbon in the atmosphere. Atmospheric Measurement Techniques, 2016, 9, 1833-1843.                      | 3.1  | 71        |
| 66 | Amplification of light absorption of black carbon associated with air pollution. Atmospheric Chemistry and Physics, 2018, 18, 9879-9896.                                                                                                              | 4.9  | 67        |
| 67 | The 2005–2016 Trends of Formaldehyde Columns Over China Observed by Satellites: Increasing<br>Anthropogenic Emissions of Volatile Organic Compounds and Decreasing Agricultural Fire Emissions.<br>Geophysical Research Letters, 2019, 46, 4468-4475. | 4.0  | 66        |
| 68 | Carbon and air pollutant emissions from China's cement industry 1990–2015: trends, evolution of technologies, and drivers. Atmospheric Chemistry and Physics, 2021, 21, 1627-1647.                                                                    | 4.9  | 62        |
| 69 | Impact of spatial proxies on the representation of bottom-up emission inventories: A satellite-based analysis. Atmospheric Chemistry and Physics, 2017, 17, 4131-4145.                                                                                | 4.9  | 61        |
| 70 | Land-use emissions embodied in international trade. Science, 2022, 376, 597-603.                                                                                                                                                                      | 12.6 | 61        |
| 71 | Application of Weather Research and Forecasting Model with Chemistry (WRF/Chem) over northern<br>China: Sensitivity study, comparative evaluation, and policy implications. Atmospheric Environment,<br>2016, 124, 337-350.                           | 4.1  | 60        |
| 72 | Intercomparison of NO <sub><i>x</i></sub><br>emission inventories over East Asia. Atmospheric Chemistry and Physics, 2017, 17, 10125-10141.                                                                                                           | 4.9  | 60        |

| #  | Article                                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Impacts of heterogeneous uptake of dinitrogen pentoxide and chlorine activation on ozone and reactive nitrogen partitioning: improvement and application of the WRF-Chem model in southern China. Atmospheric Chemistry and Physics, 2016, 16, 14875-14890.                      | 4.9  | 59        |
| 74 | Estimating the Contribution of Local Primary Emissions to Particulate Pollution Using Highâ€Density Station Observations. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1648-1661.                                                                                  | 3.3  | 59        |
| 75 | Multi-year downscaling application of two-way coupled WRF v3.4 and CMAQ v5.0.2 over east Asia for<br>regional climate and air quality modeling: model evaluation and aerosol direct effects. Geoscientific<br>Model Development, 2017, 10, 2447-2470.                            | 3.6  | 55        |
| 76 | Enhancement of PM <sub>2.5</sub> Concentrations by Aerosolâ€Meteorology Interactions Over China.<br>Journal of Geophysical Research D: Atmospheres, 2018, 123, 1179-1194.                                                                                                        | 3.3  | 51        |
| 77 | Comparison and evaluation of anthropogenic emissions of<br>SO <sub>2</sub> and<br>NO <sub><i>x</i></sub> over China.<br>Atmospheric Chemistry and Physics. 2018. 18. 3433-3456.                                                                                                  | 4.9  | 51        |
| 78 | Health co-benefits of climate change mitigation depend on strategic power plant retirements and pollution controls. Nature Climate Change, 2021, 11, 1077-1083.                                                                                                                  | 18.8 | 49        |
| 79 | China's emission control strategies have suppressed unfavorable influences of climate on wintertime<br>PM <sub>2.5</sub> concentrations in Beijing since 2002. Atmospheric<br>Chemistry and Physics, 2020, 20, 1497-1505.                                                        | 4.9  | 47        |
| 80 | Aerosol pH and chemical regimes of sulfate formation in aerosol water during winter haze in the North China Plain. Atmospheric Chemistry and Physics, 2020, 20, 11729-11746.                                                                                                     | 4.9  | 47        |
| 81 | Adjoint inversion of Chinese non-methane volatile organic compound emissions using space-based observations of formaldehyde and glyoxal. Atmospheric Chemistry and Physics, 2018, 18, 15017-15046.                                                                               | 4.9  | 46        |
| 82 | "New―Reactive Nitrogen Chemistry Reshapes the Relationship of Ozone to Its Precursors.<br>Environmental Science & Technology, 2018, 52, 2810-2818.                                                                                                                               | 10.0 | 44        |
| 83 | Contribution of hydroxymethanesulfonate (HMS) to severe winter haze in the North China Plain.<br>Atmospheric Chemistry and Physics, 2020, 20, 5887-5897.                                                                                                                         | 4.9  | 40        |
| 84 | Combined impacts of nitrous acid and nitryl chloride on lower-tropospheric ozone: new module<br>development in WRF-Chem and application to China. Atmospheric Chemistry and Physics, 2017, 17,<br>9733-9750.                                                                     | 4.9  | 35        |
| 85 | Weakening aerosol direct radiative effects mitigate climate penalty on Chinese air quality. Nature<br>Climate Change, 2020, 10, 845-850.                                                                                                                                         | 18.8 | 32        |
| 86 | Application of online-coupled WRF/Chem-MADRID in East Asia: Model evaluation and climatic effects of anthropogenic aerosols. Atmospheric Environment, 2016, 124, 321-336.                                                                                                        | 4.1  | 31        |
| 87 | Infrastructure Shapes Differences in the Carbon Intensities of Chinese Cities. Environmental Science<br>& Technology, 2018, 52, 6032-6041.                                                                                                                                       | 10.0 | 30        |
| 88 | Potential Effect of Halogens on Atmospheric Oxidation and Air Quality in China. Journal of<br>Geophysical Research D: Atmospheres, 2020, 125, e2019JD032058.                                                                                                                     | 3.3  | 30        |
| 89 | An inversion of NO <sub><i>x</i></sub> and<br>non-methane volatile organic compound (NMVOC) emissions using satellite observations during the<br>KORUS-AQ campaign and implications for surface ozone over East Asia. Atmospheric Chemistry and<br>Physics. 2020. 20. 9837-9854. | 4.9  | 30        |
| 90 | Decline in bulk deposition of air pollutants in China lags behind reductions in emissions. Nature<br>Geoscience, 2022, 15, 190-195.                                                                                                                                              | 12.9 | 27        |

| #   | Article                                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Sizing of Ambient Particles From a Singleâ€Particle Soot Photometer Measurement to Retrieve Mixing<br>State of Black Carbon at a Regional Site of the North China Plain. Journal of Geophysical Research D:<br>Atmospheres, 2018, 123, 12,778.                                       | 3.3  | 24        |
| 92  | Near-real-time global gridded daily CO2 emissions. Innovation(China), 2022, 3, 100182.                                                                                                                                                                                               | 9.1  | 24        |
| 93  | Application of WRF/Chem over East Asia: Part II. Model improvement and sensitivity simulations.<br>Atmospheric Environment, 2016, 124, 301-320.                                                                                                                                      | 4.1  | 22        |
| 94  | Reduction in black carbon light absorption due to multi-pollutant emission control during APEC China 2014. Atmospheric Chemistry and Physics, 2018, 18, 10275-10287.                                                                                                                 | 4.9  | 20        |
| 95  | Air quality and climate change, Topic 3 of the Model Inter-Comparison Study for Asia PhaseÂIII<br>(MICS-Asia III) – PartÂ2: aerosol radiative effects and aerosol feedbacks. Atmospheric Chemistry and<br>Physics, 2020, 20, 1147-1161.                                              | 4.9  | 20        |
| 96  | Particle Size and Mixing State of Freshly Emitted Black Carbon from Different Combustion Sources in<br>China. Environmental Science & Technology, 2020, 54, 7766-7774.                                                                                                               | 10.0 | 19        |
| 97  | Multi-year application of WRF-CAM5 over East Asia-Part I: Comprehensive evaluation and formation regimes of O3 and PM2.5. Atmospheric Environment, 2017, 165, 122-142.                                                                                                               | 4.1  | 18        |
| 98  | Relating geostationary satellite measurements of aerosol optical depth (AOD) over East Asia to fine particulate matter (PM <sub>2.5</sub> ): insights from the KORUS-AQ aircraft campaign and GEOS-Chem model simulations. Atmospheric Chemistry and Physics, 2021, 21, 16775-16791. | 4.9  | 18        |
| 99  | Modeling the aging process of black carbon during atmospheric transport using a new approach: a case study in Beijing. Atmospheric Chemistry and Physics, 2019, 19, 9663-9680.                                                                                                       | 4.9  | 17        |
| 100 | Comparison of Current and Future PM <sub>2.5</sub> Air Quality in China Under CMIP6 and DPEC Emission Scenarios. Geophysical Research Letters, 2021, 48, e2021GL093197.                                                                                                              | 4.0  | 15        |
| 101 | Decadal Variabilities in Tropospheric Nitrogen Oxides Over United States, Europe, and China. Journal of Geophysical Research D: Atmospheres, 2022, 127, e2021JD035872.                                                                                                               | 3.3  | 14        |
| 102 | Air quality and health benefits of China's current and upcoming clean air policies. Faraday<br>Discussions, 2021, 226, 584-606.                                                                                                                                                      | 3.2  | 13        |
| 103 | New WHO global air quality guidelines help prevent premature deaths in China. National Science<br>Review, 2022, 9, nwac055.                                                                                                                                                          | 9.5  | 13        |
| 104 | Secondary inorganic aerosol during heating season in a megacity in Northeast China: Evidence for heterogeneous chemistry in severe cold climate region. Chemosphere, 2020, 261, 127769.                                                                                              | 8.2  | 12        |
| 105 | Weakened Haze Mitigation Induced by Enhanced Aging of Black Carbon in China. Environmental Science<br>& Technology, 2022, 56, 7629-7636.                                                                                                                                             | 10.0 | 11        |
| 106 | Integration of field observation and air quality modeling to characterize Beijing aerosol in different seasons. Chemosphere, 2020, 242, 125195.                                                                                                                                      | 8.2  | 10        |
| 107 | Unexpected response of nitrogen deposition to nitrogen oxide controls and implications for land carbon sink. Nature Communications, 2022, 13, .                                                                                                                                      | 12.8 | 10        |
| 108 | Bimodal distribution of size-resolved particle effective density: results from a short campaign in a rural environment over the North China Plain. Atmospheric Chemistry and Physics, 2022, 22, 2029-2047.                                                                           | 4.9  | 7         |

| #   | Article                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Global and Regional Patterns of Soil Nitrous Acid Emissions and Their Acceleration of Rural<br>Photochemical Reactions. Journal of Geophysical Research D: Atmospheres, 2022, 127, .  | 3.3 | 7         |
| 110 | Daily Emission Patterns of Coal-Fired Power Plants in China Based on Multisource Data Fusion. ACS<br>Environmental Au, 2022, 2, 363-372.                                              | 7.0 | 4         |
| 111 | Potential Impacts of Aerosol on Diurnal Variation of Precipitation in Autumn Over the Sichuan Basin,<br>China. Journal of Geophysical Research D: Atmospheres, 2022, 127, .           | 3.3 | 2         |
| 112 | Improving NO <sub><i>x</i></sub> emission estimates in Beijing using network observations and a perturbed emissions ensemble. Atmospheric Chemistry and Physics, 2022, 22, 8617-8637. | 4.9 | 1         |