
Andreas Schmittner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6403565/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessing the effects of ocean diffusivity and climate sensitivity on the rate of global climate change. Tellus, Series B: Chemical and Physical Meteorology, 2022, 64, 17733.	1.6	7
2	Projected reversal of oceanic stable carbon isotope ratio depth gradient with continued anthropogenic carbon emissions. Communications Earth & Environment, 2022, 3, .	6.8	2
3	World Atlas of late Quaternary Foraminiferal Oxygen and Carbon Isotope Ratios. Earth System Science Data, 2022, 14, 2553-2611.	9.9	5
4	Glacial deep ocean deoxygenation driven by biologically mediated air–sea disequilibrium. Nature Geoscience, 2021, 14, 43-50.	12.9	18
5	Carbon isotope constraints on glacial Atlantic meridional overturning: Strength vs depth. Quaternary Science Reviews, 2021, 257, 106844.	3.0	16
6	Constraining Global Marine Iron Sources and Ligandâ€Mediated Scavenging Fluxes With GEOTRACES Dissolved Iron Measurements in an Ocean Biogeochemical Model. Global Biogeochemical Cycles, 2021, 35, e2021GB006948.	4.9	14
7	Enhanced vertical mixing in the glacial ocean inferred from sedimentary carbon isotopes. Communications Earth & Environment, 2021, 2, .	6.8	6
8	Active North Atlantic deepwater formation during Heinrich Stadial 1. Quaternary Science Reviews, 2021, 270, 107145.	3.0	7
9	Phasing of millennial-scale climate variability in the Pacific and Atlantic Oceans. Science, 2020, 370, 716-720.	12.6	49
10	Evaluation of the University of Victoria Earth System Climate Model version 2.10 (UVic ESCM 2.10). Geoscientific Model Development, 2020, 13, 4183-4204.	3.6	23
11	Ongoing Increase in Eastern Tropical North Pacific Denitrification as Interpreted Through the Santa Barbara Basin Sedimentary δ ¹⁵ N Record. Paleoceanography and Paleoclimatology, 2019, 34, 1554-1567.	2.9	12
12	Less Remineralized Carbon in the Intermediateâ€Depth South Atlantic During Heinrich Stadial 1. Paleoceanography and Paleoclimatology, 2019, 34, 1218-1233.	2.9	6
13	Glacial Ice Sheet Extent Effects on Modeled Tidal Mixing and the Global Overturning Circulation. Paleoceanography and Paleoclimatology, 2019, 34, 1437-1454.	2.9	20
14	Mechanisms of millennial-scale atmospheric CO2 change in numerical model simulations. Quaternary Science Reviews, 2019, 220, 30-74.	3.0	46
15	PaCTS 1.0: A Crowdsourced Reporting Standard for Paleoclimate Data. Paleoceanography and Paleoclimatology, 2019, 34, 1570-1596.	2.9	30
16	Air-sea disequilibrium enhances ocean carbon storage during glacial periods. Science Advances, 2019, 5, eaaw4981.	10.3	73
17	Deep-water circulation changes lead North Atlantic climate during deglaciation. Nature Communications, 2019, 10, 1272.	12.8	47
18	Last Century Warming Over the Canadian Atlantic Shelves Linked to Weak Atlantic Meridional Overturning Circulation. Geophysical Research Letters, 2018, 45, 12,376.	4.0	33

#	Article	IF	CITATIONS
19	Weak overturning circulation and high Southern Ocean nutrient utilization maximized glacial ocean carbon. Earth and Planetary Science Letters, 2018, 496, 47-56.	4.4	55
20	Calibration of the carbon isotope composition (δ ¹³ C) of benthic foraminifera. Paleoceanography, 2017, 32, 512-530.	3.0	63
21	Centennial-scale Holocene climate variations amplified by Antarctic Ice Sheet discharge. Nature, 2017, 541, 72-76.	27.8	68
22	Combined Effects of Atmospheric and Seafloor Iron Fluxes to the Glacial Ocean. Paleoceanography, 2017, 32, 1204-1218.	3.0	21
23	Carbon storage in the midâ€depth Atlantic during millennialâ€scale climate events. Paleoceanography, 2017, 32, 780-795.	3.0	21
24	A cloud feedback emulator (CFE, version 1.0) for an intermediate complexity model. Geoscientific Model Development, 2017, 10, 945-958.	3.6	2
25	A Three-Dimensional Model of the Marine Nitrogen Cycle during the Last Glacial Maximum Constrained by Sedimentary Isotopes. Frontiers in Marine Science, 2017, 4, .	2.5	29
26	Evidence for a biological pump driver of atmospheric CO ₂ rise during Heinrich Stadial 1. Geophysical Research Letters, 2016, 43, 12,242.	4.0	20
27	The smoking gun for Atlantic circulation changes. Science, 2016, 353, 445-446.	12.6	1
28	Complementary constraints from carbon (¹³ C) and nitrogen (¹⁵ N) isotopes on the glacial ocean's softâ€ŧissue biological pump. Paleoceanography, 2016, 31, 669-693.	3.0	67
29	Fate of the Atlantic Meridional Overturning Circulation: Strong decline under continued warming and Greenland melting. Geophysical Research Letters, 2016, 43, 12,252.	4.0	132
30	Explicit Planktic Calcifiers in the University of Victoria Earth System Climate Model, Version 2.9. Atmosphere - Ocean, 2015, 53, 332-350.	1.6	18
31	Glacial Atlantic overturning increased by wind stress in climate models. Geophysical Research Letters, 2015, 42, 9862-9868.	4.0	88
32	Glacial ocean overturning intensified by tidal mixing in a global circulation model. Geophysical Research Letters, 2015, 42, 4014-4022.	4.0	51
33	Early deglacial Atlantic overturning decline and its role in atmospheric CO ₂ rise inferred from carbon isotopes (δ ¹³ C). Climate of the Past, 2015, 11, 135-152.	3.4	68
34	Southern Ocean control of glacial AMOC stability and Dansgaard-Oeschger interstadial duration. Paleoceanography, 2015, 30, 1595-1612.	3.0	55
35	Climatic Consequences of a Pine Island Glacier Collapse. Journal of Climate, 2015, 28, 9221-9234.	3.2	7
36	Southwest Atlantic water mass evolution during the last deglaciation. Paleoceanography, 2015, 30, 477-494.	3.0	75

#	Article	IF	CITATIONS
37	An improved parameterization of tidal mixing for ocean models. Geoscientific Model Development, 2014, 7, 211-224.	3.6	18
38	The acceleration of oceanic denitrification during deglacial warming. Nature Geoscience, 2013, 6, 579-584.	12.9	84
39	Biology and air–sea gas exchange controls on the distribution of carbon isotope ratios (Î ¹³ C) in the ocean. Biogeosciences, 2013, 10, 5793-5816.	3.3	130
40	Isotopic constraints on the pre-industrial oceanic nitrogen budget. Biogeosciences, 2013, 10, 5889-5910.	3.3	57
41	Response to Comment on "Climate Sensitivity Estimated from Temperature Reconstructions of the Last Glacial Maximum― Science, 2012, 337, 1294-1294.	12.6	5
42	A review of nitrogen isotopic alteration in marine sediments. Paleoceanography, 2012, 27, .	3.0	240
43	Changes in equatorial Pacific thermocline depth in response to Panamanian seaway closure: Insights from a multi-model study. Earth and Planetary Science Letters, 2012, 317-318, 76-84.	4.4	60
44	Abrupt change in atmospheric CO ₂ during the last ice age. Geophysical Research Letters, 2012, 39, .	4.0	28
45	Calcium carbonate production response to future ocean warming and acidification. Biogeosciences, 2012, 9, 2351-2364.	3.3	17
46	Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature, 2012, 484, 49-54.	27.8	1,141
47	Climate Sensitivity Estimated from Temperature Reconstructions of the Last Glacial Maximum. Science, 2011, 334, 1385-1388.	12.6	212
48	Effects of Mountains and Ice Sheets on Global Ocean Circulation*. Journal of Climate, 2011, 24, 2814-2829.	3.2	67
49	Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13415-13419.	7.1	278
50	Evaluation of a present-day climate simulation with a new coupled atmosphere-ocean model GENMOM. Geoscientific Model Development, 2011, 4, 69-83.	3.6	43
51	Nonlinearity of Carbon Cycle Feedbacks. Journal of Climate, 2011, 24, 4255-4275.	3.2	49
52	Simulating the global distribution of nitrogen isotopes in the ocean. Global Biogeochemical Cycles, 2010, 24, .	4.9	186
53	Nitrogen isotope simulations show the importance of atmospheric iron deposition for nitrogen fixation across the Pacific Ocean. Geophysical Research Letters, 2010, 37, .	4.0	29
54	What is the skill of ocean tracers in reducing uncertainties about ocean diapycnal mixing and projections of the Atlantic Meridional Overturning Circulation?. Journal of Geophysical Research, 2010, 115, .	3.3	28

#	Article	IF	CITATIONS
55	Mid-Pliocene shifts in ocean overturning circulation and the onset of Quaternary-style climates. Climate of the Past, 2009, 5, 269-283.	3.4	88
56	Using tracer observations to reduce the uncertainty of ocean diapycnal mixing and climate–carbon cycle projections. Global Biogeochemical Cycles, 2009, 23, .	4.9	31
57	Correction to "Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a businessâ€asâ€usual CO ₂ emission scenario until year 4000 ADâ€. Global Biogeochemical Cycles, 2009, 23, .	4.9	14
58	Glacial greenhouse-gas fluctuations controlled by ocean circulation changes. Nature, 2008, 456, 373-376.	27.8	179
59	Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a businessâ€asâ€usual CO ₂ emission scenario until year 4000 AD. Global Biogeochemical Cycles, 2008, 22, .	4.9	327
60	Simulated 21st century's increase in oceanic suboxia by CO ₂ â€enhanced biotic carbon export. Global Biogeochemical Cycles, 2008, 22, .	4.9	234
61	Evaluation of Different Methods to Assess Model Projections of the Future Evolution of the Atlantic Meridional Overturning Circulation. Journal of Climate, 2007, 20, 2121-2132.	3.2	43
62	The past and future ocean circulation from a contemporary perspective. Geophysical Monograph Series, 2007, , 53-74.	0.1	16
63	Present-day manifestation of the Nordic Seas Overflows. Geophysical Monograph Series, 2007, , 75-89.	0.1	21
64	Decadal to multidecadal variability of the Atlantic MOC: Mechanisms and predictability. Geophysical Monograph Series, 2007, , 149-166.	0.1	13
65	Phasing of millennial climate events and northeast Atlantic deep-water temperature change since 50 ka BP. Geophysical Monograph Series, 2007, , 197-208.	0.1	28
66	North Atlantic intermediate depth variability during the Younger Dryas: Evidence from benthic foraminiferal Mg/Ca and the GFDL R30 Coupled Climate Model. Geophysical Monograph Series, 2007, , 247-263.	0.1	5
67	Musings about the connection between thermohaline circulation and climate. Geophysical Monograph Series, 2007, , 265-278.	0.1	4
68	Mechanisms for an â^1⁄47-kyr climate and sea-level oscillation during marine isotope stage 3. Geophysical Monograph Series, 2007, , 209-246.	0.1	47
69	Impact of the ocean's Overturning circulation on atmospheric CO2. Geophysical Monograph Series, 2007, , 315-334.	0.1	17
70	Antarctic stratification, atmospheric water vapor, and Heinrich Events: A hypothesis for Late Pleistocene deglaciations. Geophysical Monograph Series, 2007, , 335-349.	0.1	14
71	Effect of the Greenland ice-sheet melting on the response and stability of the AMOC in the Next centuries. Geophysical Monograph Series, 2007, , 383-392.	0.1	4
72	Millennial-scale interhemispheric asymmetry of low-latitude precipitation: Speleothem evidence and possible high-latitude forcing. Geophysical Monograph Series, 2007, , 279-294.	0.1	9

#	Article	IF	CITATIONS
73	14C reservoir ages show deglacial changes in ocean currents and carbon cycle. Geophysical Monograph Series, 2007, , 175-196.	0.1	46
74	Large fluctuations of dissolved oxygen in the Indian and Pacific oceans during Dansgaardâ€Oeschger oscillations caused by variations of North Atlantic Deep Water subduction. Paleoceanography, 2007, 22, .	3.0	104
75	Simulating the impact of the Panamanian seaway closure on ocean circulation, marine productivity and nutrient cycling. Earth and Planetary Science Letters, 2006, 246, 367-380.	4.4	127
76	Decline of the marine ecosystem caused by a reduction in the Atlantic overturning circulation. Nature, 2005, 434, 628-633.	27.8	254
77	A global model of the marine ecosystem for long-term simulations: Sensitivity to ocean mixing, buoyancy forcing, particle sinking, and dissolved organic matter cycling. Global Biogeochemical Cycles, 2005, 19, .	4.9	109
78	The effect of Denmark Strait overflow on the Atlantic Meridional Overturning Circulation. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	22
79	Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophysical Research Letters, 2005, 32, .	4.0	237
80	The Atlantic–Pacific Seesaw. Journal of Climate, 2004, 17, 2033-2038.	3.2	108
81	Response to the comments by Peter Huybers. Quaternary Science Reviews, 2004, 23, 210-212.	3.0	1
82	Modelling carbon cycle feedbacks during abrupt climate change. Quaternary Science Reviews, 2004, 23, 431-448.	3.0	8
83	Ventilation of the North Atlantic Ocean during the Last Glacial Maximum: A comparison between simulated and observed radiocarbon ages. Paleoceanography, 2003, 18, n/a-n/a.	3.0	51
84	Atlantic deep circulation controlled by freshening in the Southern Ocean. Geophysical Research Letters, 2003, 30, .	4.0	29
85	Southern Ocean sea ice and radiocarbon ages of glacial bottom waters. Earth and Planetary Science Letters, 2003, 213, 53-62.	4.4	42
86	Coupling of the hemispheres in observations and simulations of glacial climate change. Quaternary Science Reviews, 2003, 22, 659-671.	3.0	150
87	Instability of Glacial Climate in a Model of the Ocean- Atmosphere-Cryosphere System. Science, 2002, 295, 1489-1493.	12.6	131
88	Forcing of the deep ocean circulation in simulations of the Last Glacial Maximum. Paleoceanography, 2002, 17, 5-1-5-15.	3.0	45
89	Sensitivity of the thermohaline circulation to tropical and high latitude freshwater forcing during the last glacial-interglacial cycle. Paleoceanography, 2002, 17, 7-1-7-12.	3.0	43
90	Simulations of Heinrich Events in a coupled ocean-atmosphere-sea ice model. Geophysical Research Letters, 2002, 29, 16-1-16-3.	4.0	13

#	ARTICLE	IF	CITATIONS
91	On the Role of Wind-Driven Sea Ice Motion on Ocean Ventilation. Journal of Physical Oceanography, 2002, 32, 3376-3395.	1.7	39
92	Dependence of multiple climate states on ocean mixing parameters. Geophysical Research Letters, 2001, 28, 1027-1030.	4.0	57
93	The UVic earth system climate model: Model description, climatology, and applications to past, present and future climates. Atmosphere - Ocean, 2001, 39, 361-428.	1.6	604
94	A Seasonally Forced Ocean–Atmosphere Model for Paleoclimate Studies. Journal of Climate, 2001, 14, 1055-1068.	3.2	20
95	Title is missing!. Integrated Assessment: an International Journal, 2000, 1, 301-306.	0.8	4
96	Validation of parametrisations for the meridional energy and moisture transport used in simple climate models. Climate Dynamics, 2000, 16, 63-77.	3.8	7
97	Enhanced Atlantic freshwater export during El Niño. Geophysical Research Letters, 2000, 27, 1163-1166.	4.0	108
98	Global Warming and Marine Carbon Cycle Feedbacks on Future Atmospheric CO2. Science, 1999, 284, 464-467.	12.6	284
99	The Stability of the Thermohaline Circulation in Global Warming Experiments. Journal of Climate, 1999, 12, 1117-1133.	3.2	92
100	Influence of CO2 emission rates on the stability of the thermohaline circulation. Nature, 1997, 388, 862-865.	27.8	426