
Arthur S Sherman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6401935/publications.pdf Version: 2024-02-01

ADTHILD S SHEDMAN

#	Article	IF	CITATIONS
1	Enhanced proportion of small adipose cells in insulin-resistant vs insulin-sensitive obese individuals implicates impaired adipogenesis. Diabetologia, 2007, 50, 1707-1715.	6.3	321
2	Topological and phenomenological classification of bursting oscillations. Bulletin of Mathematical Biology, 1995, 57, 413-439.	1.9	235
3	Pulsatile insulin secretion, impaired glucose tolerance and type 2 diabetes. Molecular Aspects of Medicine, 2015, 42, 61-77.	6.4	186
4	A mathematical model of metabolic insulin signaling pathways. American Journal of Physiology - Endocrinology and Metabolism, 2002, 283, E1084-E1101.	3.5	177
5	Metabolic and electrical oscillations: partners in controlling pulsatile insulin secretion. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E890-E900.	3.5	155
6	Calcium and Glycolysis Mediate Multiple Bursting Modes in Pancreatic Islets. Biophysical Journal, 2004, 87, 3074-3087.	0.5	147
7	A simplified model for mitochondrial ATP production. Journal of Theoretical Biology, 2006, 243, 575-586.	1.7	145
8	The Ca2+ Dynamics of Isolated Mouse β-Cells and Islets: Implications for Mathematical Models. Biophysical Journal, 2003, 84, 2852-2870.	0.5	141
9	Intra- and Inter-Islet Synchronization of Metabolically Driven Insulin Secretion. Biophysical Journal, 2005, 89, 107-119.	0.5	129
10	Cellularity and Adipogenic Profile of the Abdominal Subcutaneous Adipose Tissue From Obese Adolescents: Association With Insulin Resistance and Hepatic Steatosis. Diabetes, 2010, 59, 2288-2296.	0.6	117
11	Experimental Characterization and Mathematical Modeling of P2X7 Receptor Channel Gating. Journal of Neuroscience, 2010, 30, 14213-14224.	3.6	116
12	Asymptotic Analysis of Buffered Calcium Diffusion near a Point Source. SIAM Journal on Applied Mathematics, 2001, 61, 1816-1838.	1.8	104
13	Interaction of Glycolysis and Mitochondrial Respiration in Metabolic Oscillations of Pancreatic Islets. Biophysical Journal, 2007, 92, 1544-1555.	0.5	104
14	Glucose Modulates [Ca2+]i Oscillations in Pancreatic Islets via Ionic and Glycolytic Mechanisms. Biophysical Journal, 2006, 91, 2082-2096.	0.5	102
15	Subcutaneous adipose cell size and distribution: Relationship to insulin resistance and body fat. Obesity, 2014, 22, 673-680.	3.0	100
16	Modeling Study of the Effects of Overlapping Ca2+ Microdomains on Neurotransmitter Release. Biophysical Journal, 1999, 76, 735-750.	0.5	99
17	The Phantom Burster Model for Pancreatic β-Cells. Biophysical Journal, 2000, 79, 2880-2892.	0.5	97
18	A calcium-based phantom bursting model for pancreatic islets. Bulletin of Mathematical Biology, 2004, 66, 1313-1344.	1.9	97

#	Article	IF	CITATIONS
19	Mechanism of Spontaneous and Receptor-Controlled Electrical Activity in Pituitary Somatotrophs: Experiments and Theory. Journal of Neurophysiology, 2007, 98, 131-144.	1.8	96
20	Facilitation through Buffer Saturation: Constraints on Endogenous Buffering Properties. Biophysical Journal, 2004, 86, 2691-2709.	0.5	94
21	Newcomer insulin secretory granules as a highly calcium-sensitive pool. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7432-7436.	7.1	94
22	Inflammation in subcutaneous adipose tissue: relationship to adipose cell size. Diabetologia, 2010, 53, 369-377.	6.3	92
23	Individual Mice Can Be Distinguished by the Period of Their Islet Calcium Oscillations. Diabetes, 2005, 54, 3517-3522.	0.6	89
24	The Size of Large Adipose Cells Is a Predictor of Insulin Resistance in Firstâ€Degree Relatives of Type 2 Diabetic Patients. Obesity, 2012, 20, 932-938.	3.0	89
25	Diffusion of Calcium and Metabolites in Pancreatic Islets: Killing Oscillations with a Pitchfork. Biophysical Journal, 2006, 90, 3434-3446.	0.5	85
26	Full system bifurcation analysis of endocrine bursting models. Journal of Theoretical Biology, 2010, 264, 1133-1146.	1.7	84
27	New and Corrected Simulations of Synaptic Facilitation. Biophysical Journal, 2002, 83, 1368-1373.	0.5	83
28	Diffusively Coupled Bursters: Effects of Cell Heterogeneity. Bulletin of Mathematical Biology, 1998, 60, 1167-1200.	1.9	79
29	Channel Sharing in Pancreatic β -Cells Revisited: Enhancement of Emergent Bursting by Noise. Journal of Theoretical Biology, 2000, 207, 513-530.	1.7	79
30	Anti-phase, asymmetric and aperiodic oscillations in excitable cells—I. Coupled bursters. Bulletin of Mathematical Biology, 1994, 56, 811-835.	1.9	78
31	Cell Type- and Sex-Dependent Transcriptome Profiles of Rat Anterior Pituitary Cells. Frontiers in Endocrinology, 2019, 10, 623.	3.5	74
32	Closing in on the Mechanisms of Pulsatile Insulin Secretion. Diabetes, 2018, 67, 351-359.	0.6	70
33	Ca2+ channel clustering with insulin-containing granules is disturbed in type 2 diabetes. Journal of Clinical Investigation, 2017, 127, 2353-2364.	8.2	70
34	Pioglitazone Increases the Proportion of Small Cells in Human Abdominal Subcutaneous Adipose Tissue. Obesity, 2010, 18, 926-931.	3.0	69
35	Calcium-dependent block of P2X7 receptor channel function is allosteric. Journal of General Physiology, 2011, 138, 437-452.	1.9	68
36	A Mathematical Model of the Pathogenesis, Prevention, and Reversal of Type 2 Diabetes. Endocrinology, 2016, 157, 624-635.	2.8	66

#	Article	IF	CITATIONS
37	Calcium-activated K+ Channels of Mouse β-cells are Controlled by Both Store and Cytoplasmic Ca2+. Journal of General Physiology, 2002, 120, 307-322.	1.9	62
38	Modeling of Membrane Excitability in Gonadotropin-Releasing Hormone-Secreting Hypothalamic Neurons Regulated by Ca ²⁺ -Mobilizing and Adenylyl Cyclase-Coupled Receptors. Journal of Neuroscience, 2000, 20, 9290-9297.	3.6	59
39	Insulin resistance is associated with a modest increase in inflammation in subcutaneous adipose tissue of moderately obese women. Diabetologia, 2008, 51, 2303-2308.	6.3	58
40	Identifying the Targets of the Amplifying Pathway for Insulin Secretion in Pancreatic β-Cells by Kinetic Modeling of Granule Exocytosis. Biophysical Journal, 2008, 95, 2226-2241.	0.5	57
41	Electrical Bursting, Calcium Oscillations, and Synchronization of Pancreatic Islets. Advances in Experimental Medicine and Biology, 2010, 654, 261-279.	1.6	57
42	Hemoglobin Glycation Index Is Associated With Cardiovascular Diseases in People With Impaired Glucose Metabolism. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 2905-2913.	3.6	55
43	Relocalization of STIM1 for Activation of Store-operated Ca2+ Entry Is Determined by the Depletion of Subplasma Membrane Endoplasmic Reticulum Ca2+ Store. Journal of Biological Chemistry, 2007, 282, 12176-12185.	3.4	53
44	Phase Analysis of Metabolic Oscillations and Membrane Potential in Pancreatic Islet β -Cells. Biophysical Journal, 2016, 110, 691-699.	0.5	52
45	Time to glucose peak during an oral glucose tolerance test identifies prediabetes risk. Clinical Endocrinology, 2017, 87, 484-491.	2.4	51
46	Metabolic Oscillations in Pancreatic Islets Depend on the Intracellular Ca2+ Level but Not Ca2+ Oscillations. Biophysical Journal, 2010, 99, 76-84.	0.5	50
47	Calcium cooperativity of exocytosis as a measure of Ca2+ channel domain overlap. Brain Research, 2011, 1398, 126-138.	2.2	49
48	Dual Gating Mechanism and Function of P2X7 Receptor Channels. Biophysical Journal, 2013, 104, 2612-2621.	0.5	47
49	Glucose Metabolism, Islet Architecture, and Genetic Homogeneity in Imprinting of [Ca2+]i and Insulin Rhythms in Mouse Islets. PLoS ONE, 2009, 4, e8428.	2.5	45
50	From Spikers to Bursters Via Coupling: Help From Heterogeneity. Bulletin of Mathematical Biology, 2001, 63, 371-391.	1.9	43
51	Resetting Behavior in a Model of Bursting in Secretory Pituitary Cells: Distinguishing Plateaus from Pseudo-Plateaus. Bulletin of Mathematical Biology, 2008, 70, 68-88.	1.9	43
52	Differential Intra-abdominal Adipose Tissue Profiling in Obese, Insulin-resistant Women. Obesity Surgery, 2009, 19, 1564-1573.	2.1	43
53	Endothelial dysfunction due to selective insulin resistance in vascular endothelium: insights from mechanistic modeling. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E629-E646.	3.5	43
54	Long Lasting Synchronization of Calcium Oscillations by Cholinergic Stimulation in Isolated Pancreatic Islets. Biophysical Journal, 2008, 95, 4676-4688.	0.5	40

#	Article	IF	CITATIONS
55	Paracrine regulation of glucagon secretion: the β/α/δ model. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E597-E611.	3.5	40
56	Cross-currents between biology and mathematics: The codimension of pseudo-plateau bursting. Discrete and Continuous Dynamical Systems, 2012, 32, 2853-2877.	0.9	37
57	Modeling the Pancreatic α-Cell: Dual Mechanisms of Glucose Suppression of Glucagon Secretion. Biophysical Journal, 2014, 106, 741-751.	0.5	36
58	Ca 2+ Effects on ATP Production and Consumption Have Regulatory Roles on Oscillatory Islet Activity. Biophysical Journal, 2016, 110, 733-742.	0.5	35
59	Intact pancreatic islets and dispersed beta-cells both generate intracellular calcium oscillations but differ in their responsiveness to glucose. Cell Calcium, 2019, 83, 102081.	2.4	35
60	Slow variable dominance and phase resetting in phantom bursting. Journal of Theoretical Biology, 2011, 276, 218-228.	1.7	34
61	Common and diverse elements of ion channels and receptors underlying electrical activity in endocrine pituitary cells. Molecular and Cellular Endocrinology, 2018, 463, 23-36.	3.2	34
62	Three Roads to Islet Bursting: Emergent Oscillations in Coupled Phantom Bursters. Biophysical Journal, 2004, 87, 193-206.	0.5	33
63	Slow oscillations of KATP conductance in mouse pancreatic islets provide support for electrical bursting driven by metabolic oscillations. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E805-E817.	3.5	33
64	Type 2 diabetes: one disease, many pathways. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E410-E426.	3.5	33
65	Evidence That Calcium Release-activated Current Mediates the Biphasic Electrical Activity of Mouse Pancreatic β-Cells. Journal of Membrane Biology, 1997, 155, 47-59.	2.1	32
66	NEGATIVE CALCIUM FEEDBACK: THE ROAD FORM CHAY-KEIZER. , 2005, , 19-48.		32
67	Gating properties of the P2X2a and P2X2b receptor channels: Experiments and mathematical modeling. Journal of General Physiology, 2012, 139, 333-348.	1.9	32
68	Chronic Glucose Exposure Systematically Shifts the Oscillatory Threshold of Mouse Islets: Experimental Evidence for an Early Intrinsic Mechanism of Compensation for Hyperglycemia. Endocrinology, 2016, 157, 611-623.	2.8	32
69	Filtering of Calcium Transients by the Endoplasmic Reticulum in Pancreatic β-Cells. Biophysical Journal, 2004, 87, 3775-3785.	0.5	31
70	Residual Bound Ca2+ Can Account for the Effects of Ca2+ Buffers on Synaptic Facilitation. Journal of Neurophysiology, 2006, 96, 3389-3397.	1.8	31
71	Dynamical complexity and temporal plasticity in pancreatic gÎ ² b-cells. Journal of Biosciences, 2000, 25, 197-209.	1.1	28
72	Phosphofructo-2-kinase/Fructose-2,6-bisphosphatase Modulates Oscillations of Pancreatic Islet Metabolism. PLoS ONE, 2012, 7, e34036.	2.5	28

#	Article	IF	CITATIONS
73	Dynamical systems theory in physiology. Journal of General Physiology, 2011, 138, 13-19.	1.9	26
74	Postprandial Insulin Response and Clearance Among Black and White Women: The Federal Women's Study. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 181-192.	3.6	26
75	Ca ²⁺ Current versus Ca ²⁺ Channel Cooperativity of Exocytosis. Journal of Neuroscience, 2009, 29, 12196-12209.	3.6	25
76	Allosteric regulation of the P2X4 receptor channel pore dilation. Pflugers Archiv European Journal of Physiology, 2015, 467, 713-726.	2.8	24
77	A1C Underperforms as a Diagnostic Test in Africans Even in the Absence of Nutritional Deficiencies, Anemia and Hemoglobinopathies: Insight From the Africans in America Study. Frontiers in Endocrinology, 2019, 10, 533.	3.5	22
78	The Geometry of Bursting in the Dual Oscillator Model of Pancreatic \$eta\$-cells. SIAM Journal on Applied Dynamical Systems, 2009, 8, 1664-1693.	1.6	21
79	Differential adipogenic and inflammatory properties of small adipocytes in Zucker Obese and Lean rats. Diabetes and Vascular Disease Research, 2010, 7, 311-318.	2.0	21
80	Calcium and Metabolic Oscillations in Pancreatic Islets: Who's Driving the Bus?. SIAM Journal on Applied Dynamical Systems, 2014, 13, 683-703.	1.6	19
81	Modeling the diversity of spontaneous and agonist-induced electrical activity in anterior pituitary corticotrophs. Journal of Neurophysiology, 2017, 117, 2298-2311.	1.8	16
82	Divergent expression patterns of pituitary gonadotropin subunit and GnRH receptor genes to continuous GnRH in vitro and in vivo. Scientific Reports, 2019, 9, 20098.	3.3	16
83	Oscillations in K(ATP) conductance drive slow calcium oscillations in pancreatic β-cells. Biophysical Journal, 2022, 121, 1449-1464.	0.5	16
84	Amelioration of insulin resistance by rosiglitazone is associated with increased adipose cell size in obese type 2 diabetic patients. Adipocyte, 2014, 3, 314-321.	2.8	15
85	Symbiosis of Electrical and Metabolic Oscillations in Pancreatic Î ² -Cells. Frontiers in Physiology, 2021, 12, 781581.	2.8	14
86	Lessons from models of pancreatic β cells for engineering glucose-sensing cells. Mathematical Biosciences, 2010, 227, 12-19.	1.9	13
87	Modeling of Glucose-Induced cAMP Oscillations in Pancreatic Î ² Cells: cAMP Rocks when Metabolism Rolls. Biophysical Journal, 2015, 109, 439-449.	0.5	12
88	Investigating the Role of T-Cell Avidity and Killing Efficacy in Relation to Type 1 Diabetes Prediction. PLoS ONE, 2011, 6, e14796.	2.5	12
89	Estimating and eliminating junctional current in coupled cell populations by leak subtraction. A computational study. Journal of Membrane Biology, 1995, 143, 79-87.	2.1	11
90	Beta-cell failure rather than insulin resistance is the major cause of abnormal glucose tolerance in Africans: insight from the Africans in America study. BMJ Open Diabetes Research and Care, 2021, 9, e002447.	2.8	11

#	Article	IF	CITATIONS
91	Phase Independent Resetting in Relaxation and Bursting Oscillators. Journal of Theoretical Biology, 1994, 169, 339-348.	1.7	10
92	Improved Detection of Abnormal Glucose Tolerance in Africans: The Value of Combining Hemoglobin A1c With Glycated Albumin. Diabetes Care, 2020, 43, 2607-2613.	8.6	10
93	Deciphering the regulation of P2X4 receptor channel gating by ivermectin using Markov models. PLoS Computational Biology, 2017, 13, e1005643.	3.2	10
94	Do oscillations in pancreatic islets require pacemaker cells?. Journal of Biosciences, 2022, 47, 1.	1.1	10
95	Channels, Coupling, and Synchronized Rhythmic Bursting Activity. , 1992, , 29-46.		9
96	The Relationship Between Lipoproteins and Insulin Sensitivity in Youth With Obesity and Abnormal Glucose Tolerance. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 1541-1551.	3.6	9
97	Accounting for Near-Normal Glucose Sensitivity in Kir6.2[AAA] Transgenic Mice. Biophysical Journal, 2009, 97, 2409-2418.	0.5	8
98	The OGTT is highly reproducible in Africans for the diagnosis of diabetes: Implications for treatment and protocol design. Diabetes Research and Clinical Practice, 2020, 170, 108523.	2.8	8
99	BEYOND SYNCHRONIZATION: MODULATORY AND EMERGENT EFFECTS OF COUPLING IN SQUARE-WAVE BURSTING. , 2005, , 243-272.		6
100	Pulsatile Basal Insulin Secretion Is Driven by Glycolytic Oscillations. Physiology, 2022, 37, 216-223.	3.1	6
101	Modulation of the frequency of glucose-dependent bursts of electrical activity by HCO3/CO2 in rodent pancreatic B-cells: experimental and theoretical results. European Biophysics Journal, 1990, 18, 71-7.	2.2	5
102	How Pancreatic β-Cells Discriminate Long and Short Timescale cAMP Signals. Biophysical Journal, 2010, 99, 398-406.	0.5	5
103	Metabolic characteristics of Africans with normal glucose tolerance and elevated 1-hour glucose: insight from the Africans in America study. BMJ Open Diabetes Research and Care, 2020, 8, e000837.	2.8	5
104	When MINMOD Artifactually Interprets Strong Insulin Secretion as Weak Insulin Action. Frontiers in Physiology, 2021, 12, 601894.	2.8	5
105	Calcium-Prolactin Secretion Coupling in Rat Pituitary Lactotrophs Is Controlled by PI4-Kinase Alpha. Frontiers in Endocrinology, 2021, 12, 790441.	3.5	5
106	Cell-Type-Specific Expression Pattern of Proton-Sensing Receptors and Channels in Pituitary Gland. Biophysical Journal, 2020, 119, 2335-2348.	0.5	3
107	Electrical, Calcium, and Metabolic Oscillations in Pancreatic Islets. , 2015, , 453-474.		2
108	Computer Modeling of Heterogeneous β-Cell Populations. Advances in Experimental Medicine and Biology, 1997, 426, 275-284.	1.6	2

#	Article	IF	CITATIONS
109	Integrative modeling of the pancreatic "¿½"¿½-cell. , 2005, , .		1
110	Multiscale Modeling of Electrical and Intracellular Activity in the Pancreas: The Islet Tridomain Equations. Multiscale Modeling and Simulation, 2009, 7, 1609-1642.	1.6	1
111	Dynamics of Computational Islet Simulations: Islets with majority mutated open K _{ATP} channels retain bursting . Letters in Biomathematics, 2014, 1, 3-15.	0.1	1
112	Islets Transplanted Into the Eye: Do They Improve Our Insight Into Islet Adaptation to Insulin Resistance?. Diabetes, 2016, 65, 2470-2472.	0.6	1
113	How Adaptation Makes Low Firing Rates Robust. Journal of Mathematical Neuroscience, 2017, 7, 4.	2.4	1
114	1490-P: Using Longitudinal Modeling to Find One-Hour Glucose Alternatives to Two-Hour Glucose for Prediction and Diagnosis of Glucose Tolerance. Diabetes, 2019, 68, .	0.6	1
115	Predicting Future Glycemic Trajectories with a Mathematical Model. Diabetes, 2018, 67, .	0.6	1
116	An introduction to beta cell electrophysiology and modeling. , 0, , .		1
117	Pituitary corticotroph identity and receptor-mediated signaling: a transcriptomics perspective. Current Opinion in Endocrine and Metabolic Research, 2022, , 100364.	1.4	1
118	Response to the Comment by F. Diederichs. Biophysical Journal, 2008, 94, 5080.	0.5	0
119	Computational Study Of The Effect Of Calcium Buffers On The Calcium Current Cooperativity Of Exocytosis. Biophysical Journal, 2009, 96, 659a-660a.	0.5	0
120	P2X7 Receptor-Mediated Disruption of the Plasma Membrane and Endoplasmic Reticulum Morphology and Cell Survival. Biophysical Journal, 2010, 98, 701a-702a.	0.5	0
121	6-Phosphofructo-2-Kinase/Fructose-2,6-Bisphosphatase (PFKFB) Modulates Slow Oscillations in Pancreatic Islets. Biophysical Journal, 2011, 100, 380a-381a.	0.5	0
122	Testing a Computational Model of Pancreatic Beta-Cell Oscillations Using Live-Cell Imaging of Islet Oscillatory Behavior. Microscopy and Microanalysis, 2011, 17, 208-209.	0.4	0
123	Effect of spatial arrangement of presynaptic calcium channels on the calcium current cooperativity of neurotransmitter release. BMC Neuroscience, 2011, 12, .	1.9	Ο
124	Glucose-Induced Cyclic-AMP Oscillations: Modeling Incretin Impact on Pancreatic Beta Cell Secretion. Biophysical Journal, 2015, 108, 614a.	0.5	0
125	Ethnic Differences in Insulin Granule Exocytosis. Biophysical Journal, 2015, 108, 102a.	0.5	0
126	Kir2.1 Channels Compensate for the Loss of KATP Channels in SUR1 Null Islets. Biophysical Journal, 2015, 108, 435a.	0.5	0

#	Article	IF	CITATIONS
127	Detecting Early Risk of Type 2 Diabetes During an Oral Glucose Tolerance Test. Biophysical Journal, 2019, 116, 525a.	0.5	0
128	Multiple Feedback Mechanisms Underlying Beta Cell Secretory Oscillations. Biophysical Journal, 2020, 118, 562a.	0.5	0
129	1089-P: Abnormal Glucose Tolerance Consequences Depend on Etiology: Insulin Resistance vs. ß-Cell Failure. Diabetes, 2021, 70, .	0.6	Ο
130	17-OR: Mathematical Model Disposition Index (mDI) Predicts Dysglycemia in Obese Youth. Diabetes, 2021, 70, .	0.6	0
131	588-P: Model-Derived Beta-Cell Function and One-Hour Glucose Best Predict Future Diabetes in a 14-year Longitudinal Large Cohort Study in South Korea. Diabetes, 2021, 70, .	0.6	Ο
132	Amelioration of insulin resistance by rosiglitazone is associated with increased adipose cell size in obese type 2 diabetics. FASEB Journal, 2012, 26, 869.1.	0.5	0
133	Dynamics of Computational Islet Simulations: Islets with Majority Mutated Open. Letters in Biomathematics, 2014, 1, .	0.1	0
134	Electrical, Calcium, and Metabolic Oscillations in Pancreatic Islets. , 2014, , 1-20.		0
135	Deciphering the Kinetic and Gating Properties of Purinergic P2X7 Receptor Channels. Athens Journal of Sciences, 2014, 1, 43-56.	0.2	0
136	Investigating How Calcium Diffusion Affects Metabolic Oscillations and Synchronization of Pancreatic Beta Cells. Spora: A Journal of Biomathematics, 2016, 2, .	0.1	0
137	Abstract P115: Prevalence of Undiagnosed Diabetes Decreases by Eighty Percent When A1C Replaces the OGTT: The Africans in America Study. Circulation, 2019, 139, .	1.6	0
138	Abstract P116: The Oral Glucose Tolerance Test is Highly Reproducible for the Diagnosis of Diabetes in Africans: The Africans in America Study. Circulation, 2019, 139, .	1.6	0
139	Abstract P117: Prediction of Undiagnosed Diabetes in Africans is Optimized by Using Fasting Plasma Glucose at a Threshold of 100 mg/dL: The Africans in America Study. Circulation, 2019, 139, .	1.6	0
140	1600-P: Duplicate Oral Glucose Tolerance Tests Reveal Excellent Reproducibility for Detection of Diabetes but Inconsistent Results for Prediabetes: A Study of Africans. Diabetes, 2019, 68, 1600-P.	0.6	0
141	1510-P: A1C-Modified Atherosclerosis Risk in Communities Prediction Equation for Diabetes Can Be Replaced in Africans by Fasting Glucose. Diabetes, 2019, 68, 1510-P.	0.6	Ο
142	1493-P: Sickle Cell Trait, Hemoglobin C Trait, and Glucose-6-Phosphate Dehydrogenase Deficiency Contribute to Decreased Detection of Hyperglycemia by A1C. Diabetes, 2019, 68, 1493-P.	0.6	0