
Ke Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6401706/publications.pdf Version: 2024-02-01

KELIANC

#	Article	IF	CITATIONS
1	Regulating the Valence Level Arrangement of High-Al-content AlGaN Quantum Wells Using Additional Potentials with Mg Doping. Physical Chemistry Chemical Physics, 2022, , .	2.8	1
2	Hybrid metal/Ga ₂ O ₃ /GaN ultraviolet detector for obtaining low dark current and high responsivity. Optics Letters, 2022, 47, 1561.	3.3	8
3	Quantum engineering of non-equilibrium efficient p-doping in ultra-wide band-gap nitrides. Light: Science and Applications, 2021, 10, 69.	16.6	42
4	Polarization assisted self-powered GaN-based UV photodetector with high responsivity. Photonics Research, 2021, 9, 734.	7.0	28
5	2  Gbps free-space ultraviolet-C communication based on a high-bandwidth micro-LED achieved with pre-equalization. Optics Letters, 2021, 46, 2147.	3.3	42
6	A high-response ultraviolet photodetector by integrating GaN nanoparticles with graphene. Journal of Alloys and Compounds, 2021, 868, 159281.	5.5	15
7	Point Defects in Monolayer <i>h</i> -AlN as Candidates for Single-Photon Emission. ACS Applied Materials & Interfaces, 2021, 13, 37380-37387.	8.0	7
8	Cation Vacancy in Wide Bandgap IIIâ€Nitrides as Singleâ€Photon Emitter: A Firstâ€Principles Investigation. Advanced Science, 2021, 8, e2100100.	11.2	8
9	Multiple-quantum-well-induced unipolar carrier transport multiplication in AlGaN solar-blind ultraviolet photodiode. Photonics Research, 2021, 9, 1907.	7.0	13
10	Review on the Progress of AlGaN-based Ultraviolet Light-Emitting Diodes. Fundamental Research, 2021, 1, 717-734.	3.3	20
11	Improved nucleation of AlN on <i>in situ</i> nitrogen doped graphene for GaN quasi-van der Waals epitaxy. Applied Physics Letters, 2020, 117, .	3.3	22
12	Elimination of the internal electrostatic field in two-dimensional GaN-based semiconductors. Npj 2D Materials and Applications, 2020, 4, .	7.9	16
13	<i>In situ</i> fabrication of Al surface plasmon nanoparticles by metal–organic chemical vapor deposition for enhanced performance of AlGaN deep ultraviolet detectors. Nanoscale Advances, 2020, 2, 1854-1858.	4.6	7
14	The formation mechanism of voids in physical vapor deposited AlN epilayer during high temperature annealing. Applied Physics Letters, 2020, 116, .	3.3	28
15	Suppressing the luminescence of V-related point-defect in AlGaN grown by MOCVD on HVPE-AlN. Applied Surface Science, 2020, 520, 146369.	6.1	6
16	Polarization-enhanced AlGaN solar-blind ultraviolet detectors. Photonics Research, 2020, 8, 1243.	7.0	26
17	Construction of van der Waals substrates for largely mismatched heteroepitaxy systems using first principles. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	11
18	Suppressing the compositional non-uniformity of AlGaN grown on a HVPE-AlN template with large macro-steps. CrystEngComm, 2019, 21, 4864-4873.	2.6	18

Ke Jiang

#	Article	IF	CITATIONS
19	Influence of Dislocations on the Refractive Index of AlN by Nanoscale Strain Field. Nanoscale Research Letters, 2019, 14, 184.	5.7	11
20	Carrier behavior in the vicinity of pit defects in GaN characterized by ultraviolet light-assisted Kelvin probe force microscopy. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	8
21	The defect evolution in homoepitaxial AlN layers grown by high-temperature metal–organic chemical vapor deposition. CrystEngComm, 2018, 20, 2720-2728.	2.6	25
22	Modulating the Surface State of SiC to Control Carrier Transport in Graphene/SiC. Small, 2018, 14, e1801273.	10.0	12
23	Defect evolution in AlN templates on PVD-AlN/sapphire substrates by thermal annealing. CrystEngComm, 2018, 20, 4623-4629.	2.6	39
24	Enhanced spectral response of an AlGaN-based solar-blind ultraviolet photodetector with Al nanoparticles. Optics Express, 2014, 22, 24286.	3.4	68
25	Influence of the growth temperature of AlN nucleation layer on AlN template grown by high-temperature MOCVD. Materials Letters, 2014, 114, 26-28.	2.6	70
26	In situ observation of two-step growth of AlN on sapphire using high-temperature metal–organic chemical vapour deposition. CrystEngComm, 2013, 15, 6066.	2.6	71
27	Realization of a Highâ€Performance GaN UV Detector by Nanoplasmonic Enhancement. Advanced Materials, 2012, 24, 845-849.	21.0	243
28	Influence of threading dislocations on GaN-based metal-semiconductor-metal ultraviolet photodetectors. Applied Physics Letters, 2011, 98, .	3.3	72
29	Improved performance of GaN metal-semiconductor-metal ultraviolet detectors by depositing SiO2 nanoparticles on a GaN surface. Applied Physics Letters, 2011, 98, .	3.3	48