Ting Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6401606/publications.pdf Version: 2024-02-01

TINC THEN

#	Article	IF	CITATIONS
1	Recent development in lead-free perovskite piezoelectric bulk materials. Progress in Materials Science, 2018, 98, 552-624.	32.8	706
2	Giant Piezoelectricity in Potassium–Sodium Niobate Lead-Free Ceramics. Journal of the American Chemical Society, 2014, 136, 2905-2910.	13.7	693
3	The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energy and Environmental Science, 2017, 10, 528-537.	30.8	386
4	Large d33 in (K,Na)(Nb,Ta,Sb)O3-(Bi,Na,K)ZrO3 lead-free ceramics. Journal of Materials Chemistry A, 2014, 2, 4122.	10.3	103
5	High strain in (K _{0.40} Na _{0.60})(Nb _{0.955} Sb _{0.045})O ₃ –Bi <su ceramics with large piezoelectricity. Journal of Materials Chemistry C, 2014, 2, 8796-8803.</su 	b>0 a.5 0 <td>ub9Ma₍</td>	ub9Ma ₍
6	Multi-scale thermal stability of niobate-based lead-free piezoceramics with large piezoelectricity. Journal of Materials Chemistry C, 2015, 3, 8780-8787.	5.5	91
7	Potassium–sodium niobate lead-free ceramics: modified strain as well as piezoelectricity. Journal of Materials Chemistry A, 2015, 3, 1868-1874.	10.3	87
8	Perovskite BiFeO ₃ –BaTiO ₃ Ferroelectrics: Engineering Properties by Domain Evolution and Thermal Depolarization Modification. Advanced Electronic Materials, 2020, 6, 2000079.	5.1	87
9	Composition-Driven Phase Boundary and Piezoelectricity in Potassium–Sodium Niobate-Based Ceramics. ACS Applied Materials & Interfaces, 2015, 7, 20332-20341.	8.0	76
10	Compositionally Graded KNNâ€Based Multilayer Composite with Excellent Piezoelectric Temperature Stability. Advanced Materials, 2022, 34, e2109175.	21.0	74
11	High-performance piezoelectric-energy-harvester and self-powered mechanosensing using lead-free potassium–sodium niobate flexible piezoelectric composites. Journal of Materials Chemistry A, 2018, 6, 16439-16449.	10.3	73
12	Effects of site engineering and doped element types on piezoelectric and dielectric properties of bismuth ferrite lead-free ceramics. Journal of Materials Chemistry C, 2015, 3, 11326-11334.	5.5	69
13	High-performance potassium sodium niobate piezoceramics for ultrasonic transducer. Nano Energy, 2020, 70, 104559.	16.0	68
14	Competitive mechanism of temperature-dependent electrical properties in BiFeO3-BaTiO3 ferroelectrics controlled by domain evolution. Acta Materialia, 2021, 206, 116601.	7.9	64
15	Strong Piezoelectricity in (1 – x)(K0.4Na0.6)(Nb0.96Sb0.04)O3-xBi0.5K0.5Zr1–ySnyO3 Lead-Free Binary System: Identification and Role of Multiphase Coexistence. ACS Applied Materials & Interfaces, 2015, 7, 5927-5937.	8.0	63
16	Enhanced piezoelectricity in (1 â^') Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 147 Td (x)Bi _{1.05} Fe _{ ceramics: site engineering and wide phase boundary region. Dalton Transactions, 2016, 45, 11277-11285.}	1â^'y3.3	>A _{y62}
17	New potassium-sodium niobate lead-free piezoceramic: Giant- <i>d</i> 33 vs. sintering temperature. Journal of Applied Physics, 2014, 115, .	2.5	59
18	Large Electrocaloric Effect in (Bi _{0.5} Na _{0.5})TiO ₃ -Based Relaxor	8.0	58

Large Electrocaloric Effect in (Bi_{0.5}Na_{0.5})TiO₃-Based Relaxor Ferroelectrics. ACS Applied Materials & amp; Interfaces, 2020, 12, 33934-33940. 8.0 18

TING ZHENG

#	Article	IF	CITATIONS
19	Large strain of lead-free bismuth ferrite ternary ceramics at elevated temperature. Scripta Materialia, 2018, 155, 11-15.	5.2	52
20	Bi nonstoichiometry and composition engineering in (1 â^' x)Bi _{1+y} FeO _{3+3y/2} â^' xBaTiO ₃ ceramics. RSC Advances, 2016, 6, 90831-90839.	3.6	48
21	Enhanced piezoelectric activity in high-temperature Bi _{1â^'xâ^'y} Sm _x La _y FeO ₃ lead-free ceramics. Journal of Materials Chemistry C, 2015, 3, 3684-3693.	5.5	44
22	New potassium–sodium niobate material system: a giant-d ₃₃ and high-T _C lead-free piezoelectric. Dalton Transactions, 2014, 43, 11759.	3.3	43
23	Characteristics of giant piezoelectricity around the rhombohedral-tetragonal phase boundary in (K,Na)NbO ₃ -based ceramics with different additives. Journal of Materials Chemistry A, 2015, 3, 15951-15961.	10.3	40
24	Mesoscale origin of dielectric relaxation with superior electrostrictive strain in bismuth ferrite-based ceramics. Materials Horizons, 2020, 7, 3011-3020.	12.2	39
25	Lead-Free (K,Na)NbO ₃ -Based Materials: Preparation Techniques and Piezoelectricity. ACS Omega, 2020, 5, 3099-3107.	3.5	37
26	Wide phase boundary zone, piezoelectric properties, and stability in 0.97(K0.4Na0.6)(Nb1â^'xSbx)O3–0.03Bi0.5Li0.5ZrO3 lead-free ceramics. Dalton Transactions, 2014, 43, 9419.	3.3	36
27	Phase structure, piezoelectric properties, and stability of new K0.48Na0.52NbO3–Bi0.5Ag0.5ZrO3 lead-free ceramics. Journal of Materials Science: Materials in Electronics, 2014, 25, 3219-3225.	2.2	36
28	Relationship between Poling Characteristics and Phase Boundaries of Potassium–Sodium Niobate Ceramics. ACS Applied Materials & Interfaces, 2016, 8, 9242-9246.	8.0	36
29	Large electrocaloric response with superior temperature stability in NaNbO ₃ -based relaxor ferroelectrics benefiting from the crossover region. Journal of Materials Chemistry A, 2021, 9, 2806-2814.	10.3	32
30	Enhanced piezoelectricity over a wide sintering temperature (400–1050 °C) range in potassium sodium niobate-based ceramics by two step sintering. Journal of Materials Chemistry A, 2015, 3, 6772-6780.	10.3	31
31	Progress on the doping and phase boundary design of potassium–sodium niobate lead-free ceramics. Journal of Advanced Dielectrics, 2018, 08, 1830003.	2.4	30
32	Symmetry of the Underlying Lattice in (K,Na)NbO ₃ -Based Relaxor Ferroelectrics with Large Electromechanical Response. ACS Applied Materials & Interfaces, 2021, 13, 7461-7469.	8.0	30
33	Understanding the Nature of Temperature Stability in Potassium Sodium Niobate Based Ceramics from Structure Evolution under External Field. ACS Applied Materials & Interfaces, 2020, 12, 32925-32934.	8.0	29
34	Multiscale Structure Engineering for High-Performance Pb-Free Piezoceramics. Accounts of Materials Research, 2022, 3, 461-471.	11.7	29
35	Electric field compensation effect driven strain temperature stability enhancement in potassium sodium niobate ceramics. Acta Materialia, 2020, 182, 1-9.	7.9	27
36	Balanced development of piezoelectricity, Curie temperature, and temperature stability in potassium–sodium niobhrate lead-free ceramics. Journal of Materials Chemistry C, 2016, 4, 9779-9787.	5.5	26

TING ZHENG

#	Article	IF	CITATIONS
37	Effects of oxide additives on structure and properties of bismuth ferrite-based ceramics. Journal of Materials Science: Materials in Electronics, 2017, 28, 11534-11542.	2.2	26
38	Composition design and electrical properties in BiFeO3–BaTiO3–Bi(Zn0.5Ti0.5)O3 lead-free ceramics. Journal of Materials Science: Materials in Electronics, 2017, 28, 13076-13083.	2.2	22
39	Defect engineering electrical properties of leadâ€free potassium sodium niobateâ€based ceramics. Journal of the American Ceramic Society, 2020, 103, 444-453.	3.8	15
40	Enhanced electrocaloric effect in compositional driven potassium sodium niobateâ€based relaxor ferroelectrics. Journal of Materials Research, 2021, 36, 1142-1152.	2.6	14
41	Decoding Thermal Depolarization Temperature in Bismuth Ferrite–Barium Titanate Relaxor Ferroelectrics with Large Strain Response. ACS Applied Materials & Interfaces, 2021, 13, 37422-37432.	8.0	13
42	Multiple property enhancement in bismuth ferriteâ€based ferroelectrics by balancing nanodomain and relaxor state. Journal of the American Ceramic Society, 2022, 105, 1241-1252.	3.8	12
43	Electrocaloric refrigeration capacity in BNT-based ferroelectrics benefiting from low depolarization temperature and high breakdown electric field. Journal of Materials Chemistry A, 2021, 9, 12772-12781.	10.3	11
44	Decoding the relationship between the electrocaloric strength and phase structure in perovskite ferroelectrics towards high performance. Journal of Materials Chemistry C, 2021, 9, 2063-2072.	5.5	11
45	Defect dynamics mediated unusual field-cycling behavior in bismuth ferrite-based ceramics. Scripta Materialia, 2020, 187, 418-423.	5.2	9
46	Constructing Relaxor/Ferroelectric Pseudocomposite To Reveal the Domain Role in Electrostrain of Bismuth Ferrite–Barium Titanate Based Ceramics. ACS Applied Materials & Interfaces, 2022, 14, 18713-18722.	8.0	8
47	Electric-Field-Insensitive Temperature Stability of Strain in KNN Multilayer Composite Ceramics. ACS Applied Materials & Interfaces, 2022, 14, 26949-26957.	8.0	8
48	Insights into the Correlation between Tetragonal Phase and Temperature Stability of Potassium Sodium Niobate Based Ceramics from Domain Behaviors. Advanced Electronic Materials, 2022, 8, 2100257.	5.1	7
49	High-performance potassium sodium niobate-based lead-free materials without antimony. Journal of Materials Science: Materials in Electronics, 2018, 29, 14487-14494.	2.2	2
50	An exploration for new strategy: Achieving both excellent temperature stability and good electrostrain in BiFeO3–BaTiO3-based relaxor ferroelectrics by domain engineering. Materials Today Physics, 2022, 27, 100747.	6.0	2
51	High-performance KNN-based ceramics: inter-granular coupling effect. Journal of Materials Science: Materials in Electronics, 2020, 31, 1065-1071.	2.2	1
52	Enhanced electrocaloric effect in compositional driven potassium sodium niobate-based relaxor ferroelectrics. Journal of Materials Research, 2021, 36, 1-11.	2.6	0