Ryoichi Yamamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6401277/publications.pdf

Version: 2024-02-01

218677 182427 3,138 127 26 51 citations h-index g-index papers 130 130 130 1767 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Relation between dynamic heterogeneities observed in scattering experiments and four-body correlations. Physical Review Research, 2022, 4, .	3.6	1
2	Smoothed profile method for direct numerical simulations of hydrodynamically interacting particles. Soft Matter, 2021, 17, 4226-4253.	2.7	17
3	Role of the Cell Cycle in Collective Cell Dynamics. Physical Review X, 2021, 11, .	8.9	5
4	Direct observation of the attachment behavior of hydrophobic colloidal particles onto a bubble surface. Soft Matter, 2020, 16, 695-702.	2.7	11
5	Dynamics of a chiral swimmer sedimenting on a flat plate. Physical Review E, 2020, 101, 052608.	2.1	21
6	A numerical study of sedimentation of rod like particles using smooth profile method. International Journal of Multiphase Flow, 2020, 127, 103263.	3.4	10
7	Eulerian/Lagrangian formulation for the elasto-capillary deformation of a flexible fibre. Journal of Computational Physics, 2020, 409, 109324.	3.8	8
8	Control of cell colony growth by contact inhibition. Scientific Reports, 2020, 10, 6713.	3.3	22
9	Modeling the mechanosensitivity of fast-crawling cells on cyclically stretched substrates. Soft Matter, 2019, 15, 683-698.	2.7	5
10	Spontaneous spatiotemporal ordering of shape oscillations enhances cell migration. Soft Matter, 2019, 15, 4939-4946.	2.7	4
11	1.â€,Particle Characteristics and Measurement1.10â€,Motion of a Single Particle1.10.3â€,Brownian Motion. Journal of the Society of Powder Technology, Japan, 2019, 56, 272-277.	0.1	O
12	Reynolds-number-dependent dynamical transitions on hydrodynamic synchronization modes of externally driven colloids. Physical Review E, 2018, 97, 032611.	2.1	3
13	Multiscale Modeling of a Polymeric Fluid Containing a Solid Particle. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2018, 26, 166-169.	0.0	O
14	Field-induced dipolar attraction between like-charged colloids. Soft Matter, 2018, 14, 4520-4529.	2.7	9
15	Modeling of Cells which Migrate and Proliferate on a Substrate. Journal of Computer Chemistry Japan, 2018, 17, 14-19.	0.1	1
16	Direct Numerical Simulations of Correlated Settling Particles. Journal of the Physical Society of Japan, 2018, 87, 064402.	1.6	6
17	Mechanics of Cell Crawling by Means of Force-free Cyclic Motion. Journal of the Physical Society of Japan, 2018, 87, 044803.	1.6	12
18	Diffuse interface model to simulate the rise of a fluid droplet across a cloud of particles. Physical Review Fluids, 2018, 3, .	2.5	8

#	Article	IF	CITATIONS
19	Enhancing Applicability and Functionality of KAPSEL Simulator. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2018, 26, 135-139.	0.0	O
20	Physical Modeling for Active Cells and Tissue. Seibutsu Butsuri, 2018, 58, 159-162.	0.1	0
21	Microstructure of rod like sedimenting particles: Direct numerical simulations. , 2017, , .		1
22	Simulations of Model Microswimmers with Fully Resolved Hydrodynamics. Journal of the Physical Society of Japan, 2017, 86, 101008.	1.6	9
23	Direct numerical simulation of an arbitrarily shaped particle at a fluidic interface. Physical Review E, 2017, 95, 063107.	2.1	6
24	Collective motion of cells crawling on a substrate: roles of cell shape and contact inhibition. Scientific Reports, 2017, 7, 5163.	3.3	22
25	Do hydrodynamically assisted binary collisions lead to orientational ordering of microswimmers?. European Physical Journal E, 2017, 40, 95.	1.6	9
26	Direct numerical simulation of a particle attachment to an immersed bubble. Physics of Fluids, 2016, 28, .	4.0	17
27	Rheological evaluation of colloidal dispersions using the smoothed profile method: formulation and applications. Journal of Fluid Mechanics, 2016, 792, 590-619.	3.4	20
28	KAPSEL: Colloidal Dispersion Simulator. , 2016, , 149-167.		1
29	Purely hydrodynamic origin for swarming of swimming particles. Physical Review E, 2016, 93, 043114.	2.1	42
30	Synchronized molecular-dynamics simulation for the thermal lubrication of a polymeric liquid between parallel plates. Computers and Fluids, 2016, 124, 185-189.	2.5	8
31	Dynamic polarisation of a charged colloid in an oscillating electric field. Molecular Physics, 2015, 113, 2511-2522.	1.7	5
32	Attachment of solid elongated particles on the surface of a stationary gas bubble. International Journal of Multiphase Flow, 2015, 71, 83-93.	3.4	24
33	Mutual information reveals multiple structural relaxation mechanisms in a model glass former. Nature Communications, 2015, 6, 6089.	12.8	50
34	Multiscale simulation for thermo-hydrodynamic lubrication of a polymeric liquid between parallel plates. Molecular Simulation, 2015, 41, 1002-1005.	2.0	2
35	Simulation studies of microstructure of colloids in sedimentation. Molecular Simulation, 2015, 41, 968-973.	2.0	5
36	28am2-F-4 Multiscale modeling for thermal lubrication of polymeric liquid. The Proceedings of the Symposium on Micro-Nano Science and Technology, 2015, 2015.7, _28am2-F-428am2-F-4.	0.0	0

#	Article	lF	Citations
37	Gravitational Settling of Glass Fibers on an Air Bubble. , 2015, , .		O
38	Direct numerical simulations of sedimenting spherical particles at non-zero Reynolds number. RSC Advances, 2014, 4, 53681-53693.	3.6	22
39	Synchronized Molecular-Dynamics Simulation via Macroscopic Heat and Momentum Transfer: An Application to Polymer Lubrication. Physical Review X, 2014, 4, .	8.9	8
40	Diffusion of colloidal particles in swimming suspensions. Molecular Physics, 2014, 112, 1389-1397.	1.7	16
41	Dynamic electrophoresis of charged colloids in an oscillating electric field. Physical Review E, 2014, 89, 062317.	2.1	16
42	Developments of Accurate Simulations for Particle Dispersions. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2014, 22, 82-87.	0.0	0
43	Hydrodynamic interactions of self-propelled swimmers. Soft Matter, 2013, 9, 4923.	2.7	74
44	Sedimentation of non-Brownian spheres at high volume fractions. Soft Matter, 2013, 9, 10056.	2.7	26
45	General Constitutive Model for Supercooled Liquids: Anomalous Transverse Wave Propagation. Physical Review Letters, 2013, 110, 095901.	7.8	21
46	Propagation of hydrodynamic interactions between particles in a compressible fluid. Physics of Fluids, $2013, 25, \ldots$	4.0	10
47	Velocity relaxation of a particle in a confined compressible fluid. Journal of Chemical Physics, 2013, 138, 184905.	3.0	7
48	Multiscale Modeling for Polymeric Flow: Particle-Fluid Bridging Scale Methods. Journal of the Physical Society of Japan, 2013, 82, 012001.	1.6	17
49	Direct numerical simulations of rigid body dispersions. I. Mobility/friction tensors of assemblies of spheres. Journal of Chemical Physics, 2013, 139, 234105.	3.0	22
50	Direct numerical simulations of anisotropic diffusion of spherical particles in sedimentation. Physical Review E, 2013, 87, 022310.	2.1	21
51	Anisotropic Velocity Fluctuations and Particle Diffusion in Sedimentation. Journal of the Physical Society of Japan, 2013, 82, 024004.	1.6	12
52	Sedimentation at finite peclet number: Direct numerical simulation. AIP Conference Proceedings, 2013, ,	0.4	8
53	Direct numerical simulation of dispersed particles in a compressible fluid. Physical Review E, 2012, 85, 066704.	2.1	18
54	Effect of hydrodynamic interactions on rapid Brownian coagulation of colloidal dispersions. Physical Review E, 2012, 86, 051403.	2.1	19

#	Article	IF	CITATIONS
55	Electrostatic Potential around a Charged Colloidal Particle in an Electrolyte Solution with Ion Strong Coupling. Journal of the Physical Society of Japan, 2012, 81, 024803.	1.6	3
56	Acoustic Wave Propagation through a Supercooled Liquid: A Normal Mode Analysis. Journal of the Physical Society of Japan, 2012, 81, 124602.	1.6	6
57	Two-dimensional lattice liquid models. Physical Review E, 2012, 86, 031124.	2.1	1
58	Mechanical responses and stress fluctuations of a supercooled liquid in a sheared non-equilibrium state. European Physical Journal E, 2012, 35, 9707.	1.6	12
59	Dynamical heterogeneity in a highly supercooled liquid under a sheared situation. Journal of Chemical Physics, 2012, 136, 084505.	3.0	18
60	Lattice-Boltzmann method combined with smoothed-profile method for particulate suspensions. Physical Review E, 2011, 83, 026702.	2.1	96
61	Reentrant transition in the shear viscosity of dilute rigid-rod dispersions. Physical Review E, 2011, 84, 051404.	2.1	7
62	Implementation of Leesâ€"Edwards periodic boundary conditions for direct numerical simulations of particle dispersions under shear flow. Journal of Chemical Physics, 2011, 134, 064110.	3.0	25
63	Dynamic rheology of a supercooled polymer melt in nonuniform oscillating flows between rapidly oscillating plates. Physical Review E, 2011, 84, 031501.	2.1	13
64	Dynamical heterogeneity in a highly supercooled liquid: Consistent calculations of correlation length, intensity, and lifetime. Physical Review E, 2011, 84, 011506.	2.1	31
65	A direct numerical simulation method for complex modulus of particle dispersions. European Physical Journal E, 2010, 32, 357-363.	1.6	5
66	Direct simulation of flowing colloidal dispersions by smoothed profile method. Advanced Powder Technology, 2010, 21, 206-211.	4.1	19
67	Tumbling motion of a single chain in shear flow: A crossover from Brownian to non-Brownian behavior. Physical Review E, 2010, 81, 041807.	2.1	24
68	Multiscale modeling and simulation for polymer melt flows between parallel plates. Physical Review E, 2010, 81, 036308.	2.1	33
69	Lifetime of dynamical heterogeneity in a highly supercooled liquid. Physical Review E, 2010, 82, 030501.	2.1	18
70	Short-time motion of Brownian particles in a shear flow. Physical Review E, 2009, 79, 031401.	2.1	28
71	Direct numerical simulations for non-Newtonian rheology of concentrated particle dispersions. Physical Review E, 2009, 80, 061402.	2.1	18
72	SMOOTHED PROFILE METHOD TO SIMULATE COLLOIDAL PARTICLES IN COMPLEX FLUIDS. International Journal of Modern Physics C, 2009, 20, 1457-1465.	1.7	13

#	Article	IF	CITATIONS
73	Velocity Autocorrelation Function of Fluctuating Particles in Incompressible Fluids. Progress of Theoretical Physics Supplement, 2009, 178, 86-91.	0.1	12
74	Rheological properties of polymer melt between rapidly oscillating plates: An application of multiscale modeling. Europhysics Letters, 2009, 86, 18002.	2.0	15
75	Simulating (electro)hydrodynamic effects in colloidal dispersions: Smoothed profile method. European Physical Journal E, 2008, 26, 361-368.	1.6	89
76	A model for hybrid simulations of molecular dynamics and computational fluid dynamics. Physics of Fluids, 2008, 20, .	4.0	51
77	A Numerical Model for Brownian Particles Fluctuating in Incompressible Fluids. Journal of the Physical Society of Japan, 2008, 77, 074007.	1.6	44
78	On the Role of Hydrodynamic Interactions in Colloidal Gelation. Journal of the Physical Society of Japan, 2008, 77, 084804.	1.6	27
79	Direct Simulation of Flowing Colloidal Dispersions by Smoothed Profile Method. Journal of the Society of Powder Technology, Japan, 2007, 44, 191-197.	0.1	0
80	Strict simulations of non-equilibrium dynamics of colloids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 311, 42-47.	4.7	12
81	Toward Large-Scale Simulations of Dispersions of Small Particles. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2007, 15, 67-71.	0.0	0
82	2503 Direct Numerical Simulations of Colloidal Dispersions:Methods and Applications. The Proceedings of the Computational Mechanics Conference, 2007, 2007.20, 195-196.	0.0	0
83	Hydrodynamic Effects in Colloidal Dispersions Studied by a New Efficient Direct Simulation. AIP Conference Proceedings, 2006, , .	0.4	4
84	Simulating Electrohydrodynamics in Charged Colloidal Dispersions: A Smoothed Profile Method. AIP Conference Proceedings, 2006, , .	0.4	0
85	Direct Numerical Simulations of Electrophoresis of Charged Colloids. Physical Review Letters, 2006, 96, 208302.	7.8	92
86	Publisher's Note: Direct Numerical Simulations of Electrophoresis of Charged Colloids [Phys. Rev. Lett.96, 208302 (2006)]. Physical Review Letters, 2006, 96, .	7.8	2
87	KAPSEL: Kyoto Advanced Particle Simulator for ELectrohydrodynamics. KONA Powder and Particle Journal, 2006, 24, 167-182.	1.7	1
88	A smoothed profile method for simulating charged colloidal dispersions. Computer Physics Communications, 2005, 169, 104-106.	7.5	7
89	Efficient Simulations of Charged Colloidal Dispersions: A Density Functional Approach. Macromolecular Theory and Simulations, 2005, 14, 278-284.	1.4	18
90	A method to resolve hydrodynamic interactions in colloidal dispersions. Computer Physics Communications, 2005, 169, 301-304.	7.5	20

#	Article	IF	Citations
91	Molecular dynamics simulation of heat conduction in near-critical fluids. Physical Review E, 2005, 71, 011507.	2.1	10
92	Simulation method to resolve hydrodynamic interactions in colloidal dispersions. Physical Review E, 2005, 71, 036707.	2.1	212
93	Entanglements in quiescent and sheared polymer melts. Physical Review E, 2004, 70, 041801.	2.1	27
94	Supercooled liquids under shear: Theory and simulation. Physical Review E, 2004, 70, 011501.	2.1	84
95	A smooth interface method for simulating liquid crystal colloid dispersions. Journal of Physics Condensed Matter, 2004, 16, S1945-S1955.	1.8	30
96	Supercooled liquids under shear: A mode-coupling theory approach. AIP Conference Proceedings, 2004, , .	0.4	0
97	Dynamics and rheology of a supercooled polymer melt in shear flow. Journal of Chemical Physics, 2002, 117, 2359-2367.	3.0	37
98	Simulating Particle Dispersions in Nematic Liquid-Crystal Solvents. Physical Review Letters, 2001, 87, 075502.	7.8	68
99	Title is missing!. Journal of Physics Condensed Matter, 2000, 12, 6323-6334.	1.8	13
100	Replica-exchange molecular dynamics simulation for supercooled liquids. Physical Review E, 2000, 61, 5473-5476.	2.1	77
101	Apparent finite-size effects in the dynamics of supercooled liquids. Physical Review E, 2000, 61, R41-R44.	2.1	62
102	Heterogeneity and finite size effects in the dynamics of supercooled liquids. European Physical Journal Special Topics, 2000, 10, Pr7-15-Pr7-20.	0.2	10
103	LARGE SCALE LONG-LIVED HETEROGENEITY IN THE DYNAMICS OF SUPERCOOLED LIQUIDS. International Journal of Modern Physics C, 1999, 10, 1553-1562.	1.7	4
104	Can thin disk-like ice clusters be more stable than compact droplet-like ice clusters?. Chemical Physics Letters, 1999, 304, 378-384.	2.6	18
105	Molecular dynamics study of a phase-separating fluid mixture under shear flow. Physical Review E, 1999, 59, 3223-3230.	2.1	18
106	Glass Transitions. Kinetic Heterogeneities in Highly Supercooled Liquids Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 1999, 9, 134-141.	0.0	0
107	Kinetic heterogeneities and non-linear rheology of highly supercooled liquids. Journal of Non-Crystalline Solids, 1998, 235-237, 34-40.	3.1	20
108	Dynamics of highly supercooled liquids: Heterogeneity, rheology, and diffusion. Physical Review E, 1998, 58, 3515-3529.	2.1	390

#	Article	IF	CITATIONS
109	Heterogeneous Diffusion in Highly Supercooled Liquids. Physical Review Letters, 1998, 81, 4915-4918.	7.8	244
110	Nonlinear rheology of a highly supercooled liquid. Europhysics Letters, 1997, 40, 61-66.	2.0	46
111	Computer simulation of ionic conduction in glass: II. Normal-mode analysis. Journal of Physics Condensed Matter, 1997, 9, 5157-5166.	1.8	0
112	Kinetic Heterogeneities in a Highly Supercooled Liquid. Journal of the Physical Society of Japan, 1997, 66, 2545-2548.	1.6	101
113	Phase Separation in Polymer Solutions Induced by Shear. Journal De Physique II, 1997, 7, 295-304.	0.9	36
114	Viscoelastic effects and shear-induced phase separation in polymer solutions. Progress in Colloid and Polymer Science, 1997, 106, 150-157.	0.5	6
115	Computer Simulation of Vapor-Liquid Phase Separation. Molecular Simulation, 1996, 16, 119-126.	2.0	6
116	Volumetric properties of mixtures of 1,4-dioxane and water at high pressures. International Journal of Thermophysics, 1996, 17, 441-454.	2.1	9
117	Monte Carlo simulation of fluoro propane. Fluid Phase Equilibria, 1995, 104, 349-361.	2.5	12
118	Computer simulation of vapor-liquid phase separation in two- and three-dimensional fluids. II. Domain structure. Physical Review B, 1995, 51, 2715-2722.	3.2	17
119	Can the †van der Waals loop' vanish? II. Effect of domain size. Molecular Physics, 1995, 84, 757-768.	1.7	10
120	Molecular dynamics simulation of Eu3+-doped chlorofluorozirconate glasses. Journal of Physics Condensed Matter, 1995, 7, 4583-4592.	1.8	10
121	Computer simulation of ionic conduction in ZrF4-BaF2glass. Journal of Physics Condensed Matter, 1995, 7, 8557-8567.	1.8	2
122	Intermolecular Interaction of Fluoro Propanes. Molecular Simulation, 1994, 12, 383-391.	2.0	7
123	Computer simulation of vapor-liquid phase separation in two- and three-dimensional fluids: Growth law of domain size. Physical Review B, 1994, 49, 14958-14966.	3.2	37
124	Volumetric properties of mixtures of fluoroalcohols and water at high pressures. International Journal of Thermophysics, 1994, 15, 245-259.	2.1	12
125	Can the â€~van der Waals loop' vanish?. Chemical Physics Letters, 1994, 231, 401-406.	2.6	7
126	Viscosity of mixtures of fluoroalcohols and water at high pressures. International Journal of Thermophysics, 1993, 14, 835-849.	2.1	17

#	Article	IF	CITATIONS
127	Thermal conductivity of halogenated ethanes, HFC-134a, HCFC-123, and HCFC-141b. International Journal of Thermophysics, 1993, 14, 79-90.	2.1	34