Luca Ottaviano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/64005/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	2D Materials for Gas Sensing Applications: A Review on Graphene Oxide, MoS2, WS2 and Phosphorene. Sensors, 2018, 18, 3638.	3.8	382
2	Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors. Sensors and Actuators B: Chemical, 2015, 207, 602-613.	7.8	331
3	Tunable sulfur desorption in exfoliated MoS2 by means of thermal annealing in ultra-high vacuum. Chemical Physics Letters, 2013, 588, 198-202.	2.6	124
4	Graphene oxide: from fundamentals to applications. Journal of Physics Condensed Matter, 2015, 27, 013002.	1.8	113
5	Mechanical exfoliation and layer number identification of MoS ₂ revisited. 2D Materials, 2017, 4, 045013.	4.4	93
6	Electronic and geometric structure of graphene/SiC(0001) decoupled by lithium intercalation. Physical Review B, 2015, 91, .	3.2	56
7	Use of Optical Contrast To Estimate the Degree of Reduction of Graphene Oxide. Journal of Physical Chemistry C, 2013, 117, 620-625.	3.1	52
8	Graphene oxide for gas detection under standard humidity conditions. 2D Materials, 2015, 2, 035018.	4.4	46
9	Transitionâ€Metal Dichalcogenide NiTe ₂ : An Ambient‣table Material for Catalysis and Nanoelectronics. Advanced Functional Materials, 2020, 30, 2000915.	14.9	45
10	Near Room Temperature Light-Activated WS2-Decorated rGO as NO2 Gas Sensor. Sensors, 2019, 19, 2617.	3.8	39
11	Sustainable Liquid-Phase Exfoliation of Layered Materials with Nontoxic Polarclean Solvent. ACS Sustainable Chemistry and Engineering, 2020, 8, 18830-18840.	6.7	36
12	XPS study of graphene oxide reduction induced by (100) and (111)-oriented Si substrates. Nanotechnology, 2018, 29, 075704.	2.6	29
13	Mechanical exfoliation and layer number identification of single crystal monoclinic CrCl ₃ . Nanotechnology, 2020, 31, 395706.	2.6	28
14	PdTe ₂ Transitionâ€Metal Dichalcogenide: Chemical Reactivity, Thermal Stability, and Device Implementation. Advanced Functional Materials, 2020, 30, 1906556.	14.9	27
15	Enhancement of the Magnetic Coupling in Exfoliated CrCl ₃ Crystals Observed by Lowâ€Temperature Magnetic Force Microscopy and Xâ€ray Magnetic Circular Dichroism. Advanced Materials, 2020, 32, e2000566.	21.0	26
16	Supramolecular self-assembly of graphene oxide and metal nanoparticles into stacked multilayers by means of a multitasking protein ring. Nanoscale, 2016, 8, 6739-6753.	5.6	24
17	Few layered MoS ₂ lithography with an AFM tip: description of the technique and nanospectroscopy investigations. Nanoscale, 2015, 7, 11453-11459.	5.6	23
18	Rapid identification of graphene flakes: alumina does it better. Nanotechnology, 2010, 21, 255703.	2.6	19

LUCA OTTAVIANO

#	Article	IF	CITATIONS
19	On the role of nano-confined water at the 2D/SiO ₂ interface in layer number engineering of exfoliated MoS ₂ via thermal annealing. 2D Materials, 2020, 7, 025001.	4.4	12
20	Emerging oxidized and defective phases in low-dimensional CrCl ₃ . Nanoscale Advances, 2021, 3, 4756-4766.	4.6	12
21	Tin Diselenide (SnSe2) Van der Waals Semiconductor: Surface Chemical Reactivity, Ambient Stability, Chemical and Optical Sensors. Materials, 2022, 15, 1154.	2.9	11
22	Exciton–phonon coupling and power dependent room temperature photoluminescence of sulphur vacancy doped MoS ₂ <i>via</i> controlled thermal annealing. Nanoscale, 2020, 12, 18899-18907.	5.6	10
23	Micro-Raman investigation of p-type B doped Si(1Â0Â0) revisited. Applied Surface Science, 2021, 561, 149691.	6.1	9
24	III–VI and IV–VI van der Waals Semiconductors InSe, GaSe and GeSe: A Suitable Platform for Efficient Electrochemical Water Splitting, Photocatalysis and Chemical Sensing. Israel Journal of Chemistry, 2022, 62, .	2.3	7
25	Surface Instability and Chemical Reactivity of ZrSiS and ZrSiSe Nodal‣ine Semimetals. Advanced Functional Materials, 2019, 29, 1900438.	14.9	6
26	Determination of the refractive index and wavelengthâ€dependent optical properties of fewâ€layer CrCl within the Fresnel formalism. Journal of Microscopy, 2021, 283, 145-150.	1.8	5
27	Electron-phonon coupling origin of the graphene π* -band kink via isotope effect. Physical Review B, 2021, 103, .	3.2	3
28	Efficient Hydrogen Evolution Reaction with Bulk and Nanostructured Mitrofanovite Pt3Te4. Nanomaterials, 2022, 12, 558.	4.1	3
29	Unconventional ferrimagnetism and enhanced magnetic ordering temperature in monolayer CrCl ₃ by introducing O impurities and Cl vacancies. JPhys Materials, 2022, 5, 014004.	4.2	3
30	Doping profiling of beveled Si wafers via UV-micro Raman spectroscopy. Applied Surface Science, 2021, 567, 150824.	6.1	2