David W Holden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6400472/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Salmonella transmembrane effector SteD hijacks AP1-mediated vesicular trafficking for delivery to antigen-loading MHCII compartments. PLoS Pathogens, 2022, 18, e1010252.	4.7	4
2	SteC and the intracellular <i>Salmonella</i> â€induced Fâ€actin meshwork. Cellular Microbiology, 2021, 23, e13315.	2.1	8
3	Structure of the cytoplasmic domain of SctV (SsaV) from the Salmonella SPI-2 injectisome and implications for a pH sensing mechanism. Journal of Structural Biology, 2021, 213, 107729.	2.8	13
4	CD97 stabilises the immunological synapse between dendritic cells and T cells and is targeted for degradation by the Salmonella effector SteD. PLoS Pathogens, 2021, 17, e1009771.	4.7	17
5	Global mapping of Salmonella enterica-host protein-protein interactions during infection. Cell Host and Microbe, 2021, 29, 1316-1332.e12.	11.0	39
6	The Tumour Suppressor TMEM127 Is a Nedd4-Family E3 Ligase Adaptor Required by Salmonella SteD to Ubiquitinate and Degrade MHC Class II Molecules. Cell Host and Microbe, 2020, 28, 54-68.e7.	11.0	31
7	Salmonella SPI-2 type III secretion system-dependent inhibition of antigen presentation and T cell function. Immunology Letters, 2019, 215, 35-39.	2.5	14
8	SrcA is a chaperone for the Salmonella SPI-2 type three secretion system effector SteD. Microbiology (United Kingdom), 2019, 165, 15-25.	1.8	7
9	Type II Toxin-Antitoxin Systems and Persister Cells. MBio, 2018, 9, .	4.1	28
10	SsaV Interacts with SsaL to Control the Translocon-to-Effector Switch in the <i>Salmonella</i> SPI-2 Type Three Secretion System. MBio, 2018, 9, .	4.1	27
11	SseK1 and SseK3 Type III Secretion System Effectors Inhibit NF-κB Signaling and Necroptotic Cell Death in Salmonella-Infected Macrophages. Infection and Immunity, 2017, 85, .	2.2	60
12	Salmonella SPI-2 Type III Secretion System Effectors: Molecular Mechanisms And Physiological Consequences. Cell Host and Microbe, 2017, 22, 217-231.	11.0	311
13	Inhibition of Nuclear Transport of NF-Äß p65 by the Salmonella Type III Secretion System Effector SpvD. PLoS Pathogens, 2016, 12, e1005653.	4.7	72
14	<i>Salmonella</i> Effectors SseF and SseG Interact with Mammalian Protein ACBD3 (GCP60) To Anchor <i>Salmonella</i> -Containing Vacuoles at the Golgi Network. MBio, 2016, 7, .	4.1	50
15	Cytosolic Replication of Group A <i>Streptococcus</i> in Human Macrophages. MBio, 2016, 7, e00020-16.	4.1	63
16	The new bacteriology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150507.	4.0	0
17	The Molecular Basis for Ubiquitin and Ubiquitin-like Specificities in Bacterial Effector Proteases. Molecular Cell, 2016, 63, 261-276.	9.7	119
18	The Salmonella Effector SteD Mediates MARCH8-Dependent Ubiquitination of MHC II Molecules and Inhibits T Cell Activation. Cell Host and Microbe, 2016, 20, 584-595.	11.0	88

DAVID W HOLDEN

#	Article	IF	CITATIONS
19	Growth inhibition of cytosolic Salmonella by caspase-1 and caspase-11 precedes host cell death. Nature Communications, 2016, 7, 13292.	12.8	106
20	The Salmonella Effector SpvD Is a Cysteine Hydrolase with a Serovar-specific Polymorphism Influencing Catalytic Activity, Suppression of Immune Responses, and Bacterial Virulence. Journal of Biological Chemistry, 2016, 291, 25853-25863.	3.4	35
21	The <i>Salmonella</i> effector SteA binds phosphatidylinositol 4-phosphate for subcellular targeting within host cells. Cellular Microbiology, 2016, 18, 949-969.	2.1	38
22	Clustered Intracellular Salmonella enterica Serovar Typhimurium Blocks Host Cell Cytokinesis. Infection and Immunity, 2016, 84, 2149-2158.	2.2	12
23	Elucidating population-wide mycobacterial replication dynamics at the single-cell level. Microbiology (United Kingdom), 2016, 162, 966-978.	1.8	57
24	Salmonella Manipulation of Host Signaling Pathways Provokes Cellular Transformation Associated with Gallbladder Carcinoma. Cell Host and Microbe, 2015, 17, 763-774.	11.0	195
25	Editorial overview: Host–microbe interactions: bacteria. Current Opinion in Microbiology, 2015, 23, v-viii.	5.1	0
26	Persisters unmasked. Science, 2015, 347, 30-32.	12.6	45
27	Src-dependent Tyrosine Phosphorylation of Non-muscle Myosin Heavy Chain-IIA Restricts Listeria monocytogenes Cellular Infection. Journal of Biological Chemistry, 2015, 290, 8383-8395.	3.4	22
28	PLEKHM1 Regulates Salmonella-Containing Vacuole Biogenesis and Infection. Cell Host and Microbe, 2015, 17, 58-71.	11.0	89
29	Edwardsiella tarda-Induced Cytotoxicity Depends on Its Type III Secretion System and Flagellin. Infection and Immunity, 2014, 82, 3436-3445.	2.2	32
30	Internalization of <i>Salmonella</i> by Macrophages Induces Formation of Nonreplicating Persisters. Science, 2014, 343, 204-208.	12.6	626
31	The Salmonella Effector SteA Contributes to the Control of Membrane Dynamics of Salmonella-Containing Vacuoles. Infection and Immunity, 2014, 82, 2923-2934.	2.2	35
32	Heterogeneity of intracellular replication of bacterial pathogens. Current Opinion in Microbiology, 2013, 16, 184-191.	5.1	56
33	Preferential invasion of mitotic cells by <i>Salmonella</i> reveals that cell surface cholesterol is maximal during metaphase. Journal of Cell Science, 2013, 126, 2990-6.	2.0	35
34	Identification of <i>Salmonella</i> Pathogenicity Island-2 Type III Secretion System Effectors Involved in Intramacrophage Replication of S. enterica Serovar Typhimurium: Implications for Rational Vaccine Design. MBio, 2013, 4, e00065.	4.1	140
35	Lack of Effect of the Salmonella Deubiquitinase SseL on the NF-κB Pathway. PLoS ONE, 2013, 8, e53064.	2.5	20
36	The Salmonella Deubiquitinase SseL Inhibits Selective Autophagy of Cytosolic Aggregates. PLoS Pathogens, 2012, 8, e1002743.	4.7	145

DAVID W HOLDEN

#	Article	IF	CITATIONS
37	Functions of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system effectors. Microbiology (United Kingdom), 2012, 158, 1147-1161.	1.8	300
38	The Salmonella Kinase SteC Targets the MAP Kinase MEK to Regulate the Host Actin Cytoskeleton. Cell Host and Microbe, 2012, 12, 657-668.	11.0	71
39	<i>Salmonella</i> Inhibits Retrograde Trafficking of Mannose-6-Phosphate Receptors and Lysosome Function. Science, 2012, 338, 963-967.	12.6	176
40	Tandem Translation Generates a Chaperone for the Salmonella Type III Secretion System Protein SsaQ. Journal of Biological Chemistry, 2011, 286, 36098-36107.	3.4	37
41	Contribution of the PhoP/Q regulon to survival and replication of Salmonella enterica serovar Typhimurium in macrophages. Microbiology (United Kingdom), 2011, 157, 2084-2093.	1.8	48
42	SKIP, the Host Target of the Salmonella Virulence Factor SifA, Promotes Kinesin-1-Dependent Vacuolar Membrane Exchanges. Traffic, 2010, 11, 899-911.	2.7	99
43	Dynamics of growth and dissemination of Salmonella in vivo. Cellular Microbiology, 2010, 12, 1389-1397.	2.1	109
44	Dynamics of intracellular bacterial replication at the single cell level. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3746-3751.	7.1	273
45	Sequestering of Rac by the Yersinia Effector YopO Blocks FcÎ ³ Receptor-mediated Phagocytosis. Journal of Biological Chemistry, 2010, 285, 4087-4098.	3.4	39
46	pH Sensing by Intracellular <i>Salmonella</i> Induces Effector Translocation. Science, 2010, 328, 1040-1043.	12.6	160
47	SCAMP3 is a component of the <i>Salmonella</i> -induced tubular network and reveals an interaction between bacterial effectors and post-Golgi trafficking. Cellular Microbiology, 2009, 11, 1236-1253.	2.1	76
48	Salmonella regulates polyubiquitination and surface expression of MHC class II antigens. Proceedings of the United States of America, 2009, 106, 14052-14057.	7.1	71
49	SpvC is a <i>Salmonella</i> effector with phosphothreonine lyase activity on host mitogenâ€activated protein kinases. Molecular Microbiology, 2008, 67, 1371-1383.	2.5	180
50	The Salmonella SPI-2 effector SseJ exhibits eukaryotic activator-dependent phospholipase A and glycerophospholipid : cholesterol acyltransferase activity. Microbiology (United Kingdom), 2008, 154, 2680-2688.	1.8	64
51	SseL, a <i>Salmonella</i> deubiquitinase required for macrophage killing and virulence. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3502-3507.	7.1	208
52	Membrane dynamics and spatial distribution of Salmonella-containing vacuoles. Trends in Microbiology, 2007, 15, 516-524.	7.7	68
53	Bacterial Interference of Ubiquitination and Deubiquitination. Cell Host and Microbe, 2007, 1, 13-22.	11.0	108
54	Dynamin is required for F-actin assembly and pedestal formation by enteropathogenic Escherichia coli (EPEC). Cellular Microbiology, 2007, 9, 438-449.	2.1	39

DAVID W HOLDEN

#	Article	IF	CITATIONS
55	The SPI-2 type III secretion system restricts motility of Salmonella-containing vacuoles. Cellular Microbiology, 2007, 9, 2517-2529.	2.1	63
56	SteC is a Salmonella kinase required for SPI-2-dependent F-actin remodelling. Cellular Microbiology, 2007, 10, 070720190331003-???.	2.1	79
57	The Translocated Salmonella Effector Proteins SseF and SseG Interact and Are Required To Establish an Intracellular Replication Niche. Infection and Immunity, 2006, 74, 6965-6972.	2.2	98
58	Polynucleotide Phosphorylase Negatively Controls spv Virulence Gene Expression in Salmonella enterica. Infection and Immunity, 2006, 74, 1243-1254.	2.2	60
59	SlyA Regulates Function of Salmonella Pathogenicity Island 2 (SPI-2) and Expression of SPI-2-Associated Genes. Infection and Immunity, 2005, 73, 4354-4362.	2.2	75
60	Microtubule motors control membrane dynamics of Salmonella-containing vacuoles. Journal of Cell Science, 2004, 117, 1033-1045.	2.0	110
61	Analysis of the mechanisms of Salmonella-induced actin assembly during invasion of host cells and intracellular replication. Cellular Microbiology, 2004, 6, 1041-1055.	2.1	85
62	SsaM and SpiC interact and regulate secretion of Salmonella Pathogenicity Island 2 type III secretion system effectors and translocators. Molecular Microbiology, 2004, 54, 604-619.	2.5	50
63	Involvement of the intermediate filament protein cytokeratinâ€18 in actin pedestal formation during EPEC infection. EMBO Reports, 2004, 5, 104-110.	4.5	84
64	Functions and effectors of the Salmonella pathogenicity island 2 type III secretion system. Cellular Microbiology, 2003, 5, 501-511.	2.1	354
65	SseG, a virulence protein that targets Salmonella to the Golgi network. EMBO Journal, 2003, 22, 5003-5014.	7.8	163
66	SseA is a chaperone for the SseB and SseD translocon components of the Salmonella pathogenicity-island-2-encoded type III secretion system. Microbiology (United Kingdom), 2003, 149, 1103-1111.	1.8	49
67	Salmonella typhimurium SifA Effector Protein Requires Its Membrane-anchoring C-terminal Hexapeptide for Its Biological Function. Journal of Biological Chemistry, 2003, 278, 14196-14202.	3.4	91
68	The roles of SsrA–SsrB and OmpR–EnvZ in the regulation of genes encoding the Salmonella typhimurium SPI-2 type III secretion system. Microbiology (United Kingdom), 2003, 149, 2385-2396.	1.8	133
69	Growth and killing of a Salmonella enterica serovar Typhimurium sifA mutant strain in the cytosol of different host cell lines. Microbiology (United Kingdom), 2002, 148, 2705-2715.	1.8	165
70	Trafficking of the Salmonella Vacuole in Macrophages. Traffic, 2002, 3, 161-169.	2.7	132
71	Complementary activities of SseJ and SifA regulate dynamics of the Salmonella typhimurium vacuolar membrane. Molecular Microbiology, 2002, 44, 645-661.	2.5	240
72	SpiC is required for secretion of Salmonella Pathogenicity Island 2 type III secretion system proteins. Cellular Microbiology, 2002, 4, 531-540.	2.1	71

5

#	Article	IF	CITATIONS
73	Staphylococcus aureus svrA: a gene required for virulence and expression of the agr locus c cThe GenBank accession numbers for the svrA gene are SAV0334 (S. aureus subsp. aureus Mu50) and SA0323 (S. aureus subsp. aureus N315) Microbiology (United Kingdom), 2002, 148, 3235-3243.	1.8	39
74	IDENTIFICATION AND ANALYSIS OF BACTERIAL VIRULENCE GENES IN VIVO. , 2001, , .		0
75	Intracellular replication ofSalmonella typhimuriumstrains in specific subsets of splenic macrophagesinÂvivo. Cellular Microbiology, 2001, 3, 587-597.	2.1	210
76	Remodelling of the actin cytoskeleton is essential for replication of intravacuolar Salmonella. Cellular Microbiology, 2001, 3, 567-577.	2.1	149
77	A functional genomic analysis of type 3 Streptococcus pneumoniae virulence. Molecular Microbiology, 2001, 40, 555-571.	2.5	259
78	Use of mixed infections with Salmonella strains to study virulence genes and their interactions in vivo. Microbes and Infection, 2001, 3, 1345-1352.	1.9	197
79	Immunization with Components of Two Iron Uptake ABC Transporters Protects Mice against Systemic Streptococcus pneumoniae Infection. Infection and Immunity, 2001, 69, 6702-6706.	2.2	150
80	In Vivo Genetic Analysis Indicates That PhoP-PhoQ and the Salmonella Pathogenicity Island 2 Type III Secretion System Contribute Independently to Salmonella enterica Serovar Typhimurium Virulence. Infection and Immunity, 2001, 69, 7254-7261.	2.2	48
81	Characterization of the Streptococcus pneumoniae NADH oxidase that is required for infection. Microbiology (United Kingdom), 2001, 147, 431-438.	1.8	55
82	Salmonella Pathogenicity Island 2-Dependent Evasion of the Phagocyte NADPH Oxidase. Science, 2000, 287, 1655-1658.	12.6	513
83	pH-dependent secretion of SseB, a product of the SPI-2 type III secretion system of Salmonella typhimurium. Molecular Microbiology, 1999, 33, 806-816.	2.5	192
84	In Vivo Genetic Analysis of Bacterial Virulence. Annual Review of Microbiology, 1999, 53, 129-154.	7.3	189
85	Influence of the <i>Salmonella typhimurium</i> Pathogenicity Island 2 Type III Secretion System on Bacterial Growth in the Mouse. Infection and Immunity, 1999, 67, 213-219.	2.2	179
86	Genes encoding putative effector proteins of the type III secretion system ofSalmonellapathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Molecular Microbiology, 1998, 30, 163-174.	2.5	571
87	Mutations in <i>Salmonella</i> Pathogenicity Island 2 (SPI2) Genes Affecting Transcription of SPI1 Genes and Resistance to Antimicrobial Agents. Journal of Bacteriology, 1998, 180, 4775-4780.	2.2	101
88	Functional analysis of ssaJ and the ssaK/U operon, 13 genes encoding components of the type III secretion apparatus of Salmonella Pathogenicity Island 2. Molecular Microbiology, 1997, 24, 155-167.	2.5	180
89	Identification of <i>Staphylococcus aureus</i> virulence genes in a murine model of bacteraemia using signatureâ€ŧagged mutagenesis. Molecular Microbiology, 1997, 26, 399-407.	2.5	421
90	Molecular genetic approaches for the study of virulence in both pathogenic bacteria and fungi. Microbiology (United Kingdom), 1996, 142, 1049-1058.	1.8	74

#	Article	IF	CITATIONS
91	The Aspergillus fumigatus chsC and chsG genes encode Class III chitin synthases with different functions. Molecular Microbiology, 1996, 20, 667-679.	2.5	141
92	A multigene family related to chitin synthase genes of yeast in the opportunistic pathogen Aspergillus fumigatus. Molecular Genetics and Genomics, 1995, 246, 353-359.	2.4	70
93	The Multiple Interactions between Salmonella and Phagocytes. , 0, , 379-P1.		0