Yu Yao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6399011/publications.pdf

Version: 2024-02-01

		236925	182427
58	3,257	25	51
papers	citations	h-index	g-index
59	59	59	5262
39	39	39	3202
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Clinical practice guidelines for the management of adult diffuse gliomas. Cancer Letters, 2021, 499, 60-72.	7.2	194
2	CTNI-52. RETROSPECTIVE ANALYSIS OF USING RADIOTHERAPY WITH CONCURRENT TEMOZOLOMIDE AND TUMOR TREATING FIELDS FOR CHINESE PATIENTS WITH NEWLY DIAGNOSED GLIOBLASTOMA. Neuro-Oncology, 2021, 23, vi72-vi72.	1.2	0
3	NCOG-14. REAL-WORLD RETROSPECTIVE ANALYSIS OF TUMOR TREATING FIELDS IN THE TREATMENT OF HIGH-GRADE GLIOMA BASED ON CHINESE POPULATION. Neuro-Oncology, 2021, 23, vi154-vi155.	1.2	O
4	Enhanced B7-H4 expression in gliomas with low PD-L1 expression identifies super-cold tumors. , 2020, 8, e000154.		23
5	Targeting hypoxia downstream signaling protein, CAIX, for CAR T-cell therapy against glioblastoma. Neuro-Oncology, 2019, 21, 1436-1446.	1.2	51
6	ATIM-11. TUMOR-INFILTRATING LYMPHOCYTES EXPRESSING ANTI-PD-1 ANTIBODY EXHIBIT A PROMISING EFFICACY AND SURVIVAL BENEFIT IN PATIENTS WITH RECURRENT GLIOBLASTOMA MULTIFORME. Neuro-Oncology, 2019, 21, vi3-vi4.	1.2	0
7	TMIC-11. ENHANCED B7-H4 EXPRESSION IN GLIOMAS WITH LOW PD-L1 EXPRESSION IDENTIFIES COLD TUMORS. Neuro-Oncology, 2019, 21, vi249-vi249.	1.2	O
8	Bioinformatic Profiling Identifies a Fatty Acid Metabolism-Related Gene Risk Signature for Malignancy, Prognosis, and Immune Phenotype of Glioma. Disease Markers, 2019, 2019, 1-14.	1.3	22
9	Cerebral ischemia induces angiogenesis in the peri-infarct regions via Notch1 signaling activation. Experimental Neurology, 2018, 304, 30-40.	4.1	32
10	Far Upstream Element-Binding Protein 1 Regulates LSD1 Alternative Splicing to Promote Terminal Differentiation of Neural Progenitors. Stem Cell Reports, 2018, 10, 1208-1221.	4.8	28
11	IMMU-38. TARGETING HYPOXIA DOWNSTREAM SIGNALING PROTEIN, CAIX FOR CAR-T CELL THERAPY AGAINST GLIOBLASTOMA (GBM). Neuro-Oncology, 2018, 20, vi129-vi129.	1.2	0
12	The prognostic value of maximal surgical resection is attenuated in oligodendroglioma subgroups of adult diffuse glioma: a multicenter retrospective study. Journal of Neuro-Oncology, 2018, 140, 591-603.	2.9	38
13	Molecular subgroups and B7-H4 expression levels predict responses to dendritic cell vaccines in glioblastoma: an exploratory randomized phase II clinical trial. Cancer Immunology, Immunotherapy, 2018, 67, 1777-1788.	4.2	67
14	SDF-1/CXCR7 Chemokine Signaling is Induced in the Peri-Infarct Regions in Patients with Ischemic Stroke. , 2018, 9, 287.		22
15	A signature based on survival-related genes identifies high-risk glioblastomas harboring immunosuppressive and aggressive ECM characteristics. Journal of Central South University (Medical) Tj ETQq1 1	007.84314	rജBT /Overle
16	The kinesin KIF14 is overexpressed in medulloblastoma and downregulation of KIF14 suppressed tumor proliferation and induced apoptosis. Laboratory Investigation, 2017, 97, 946-961.	3.7	24
17	Glioma groups classified by IDH and TERT promoter mutations remain stable among primary and recurrent gliomas. Neuro-Oncology, 2017, 19, 1008-1010.	1.2	12
18	Adult IDH wild-type lower-grade gliomas should be further stratified. Neuro-Oncology, 2017, 19, 1327-1337.	1.2	177

#	Article	IF	Citations
19	Qki deficiency maintains stemness of glioma stem cells in suboptimal environment by downregulating endolysosomal degradation. Nature Genetics, 2017, 49, 75-86.	21.4	74
20	miR-491 regulates glioma cells proliferation by targeting TRIM28 in vitro. BMC Neurology, 2016, 16, 248.	1.8	28
21	CGCG clinical practice guidelines for the management of adult diffuse gliomas. Cancer Letters, 2016, 375, 263-273.	7.2	448
22	Clinicopathological analysis of UHRF1 expression in medulloblastoma tissues and its regulation on tumor cell proliferation. Medical Oncology, 2016, 33, 99.	2.5	10
23	miR-124 suppresses the migration and invasion of glioma cells in vitro via Capn4. Oncology Reports, 2016, 35, 284-290.	2.6	43
24	Abscisicâ€acidâ€induced cellular apoptosis and differentiation in glioma via the retinoid acid signaling pathway. International Journal of Cancer, 2016, 138, 1947-1958.	5.1	19
25	B7-H4(B7x)–Mediated Cross-talk between Glioma-Initiating Cells and Macrophages via the IL6/JAK/STAT3 Pathway Lead to Poor Prognosis in Glioma Patients. Clinical Cancer Research, 2016, 22, 2778-2790.	7.0	128
26	Extensive Therapies for Extraneural Metastases from Glioblastoma, as Confirmed with the OncoScan Assay. World Neurosurgery, 2016, 90, 698.e7-698.e11.	1.3	17
27	Nucleolin overexpression is associated with an unfavorable outcome for ependymoma: a multifactorial analysis of 176 patients. Journal of Neuro-Oncology, 2016, 127, 43-52.	2.9	15
28	Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: a retrospective integrated clinical and molecular analysis. Lancet Oncology, The, 2016, 17, 484-495.	10.7	274
29	Subgroup characteristics of insular low-grade glioma based on clinical and molecular analysis of 42 cases. Journal of Neuro-Oncology, 2016, 126, 499-507.	2.9	12
30	TRIM28 as an independent prognostic marker plays critical roles in glioma progression. Journal of Neuro-Oncology, 2016, 126, 19-26.	2.9	47
31	Activation of hypoxia signaling induces phenotypic transformation of glioma cells: implications for bevacizumab antiangiogenic therapy. Oncotarget, 2015, 6, 11882-11893.	1.8	68
32	Combination genetic signature stratifies lower-grade gliomas better than histological grade. Oncotarget, 2015, 6, 20885-20901.	1.8	42
33	MB-04 * EXPRESSION OF CRMP1 INHIBITS CELL PROLIFERATION OF MEDULLOBLASTOMA AND IS REGULATED BY HMGA1. Neuro-Oncology, 2015, 17, iii20-iii20.	1.2	0
34	Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends in Molecular Medicine, 2015, 21, 24-33.	6.7	628
35	TERT promoter mutations contribute to subset prognostication of lower-grade gliomas. Modern Pathology, 2015, 28, 177-186.	5.5	107
36	CRMP1 Inhibits Proliferation of Medulloblastoma and Is Regulated by HMGA1. PLoS ONE, 2015, 10, e0127910.	2.5	13

#	Article	IF	Citations
37	TERTpromoter mutations contribute toIDHmutations in predicting differential responses to adjuvant therapies in WHO grade II and III diffuse gliomas. Oncotarget, 2015, 6, 24871-24883.	1.8	34
38	Gene mutation profiling of primary glioblastoma through multiple tumor biopsy guided by 1H-magnetic resonance spectroscopy. International Journal of Clinical and Experimental Pathology, 2015, 8, 5327-35.	0.5	13
39	TERT promoter mutated WHO grades II and III gliomas are located preferentially in the frontal lobe and avoid the midline. International Journal of Clinical and Experimental Pathology, 2015, 8, 11485-94.	0.5	11
40	Serological Identification of <scp>URGCP</scp> as a Potential Biomarker for Glioma. CNS Neuroscience and Therapeutics, 2014, 20, 301-307.	3.9	12
41	Increased Expression of Capn4 is Associated with the Malignancy of Human Glioma. CNS Neuroscience and Therapeutics, 2014, 20, 521-527.	3.9	20
42	Structure and Cancer Immunotherapy of the B7 Family Member B7x. Cell Reports, 2014, 9, 1089-1098.	6.4	58
43	Glioma-Associated Antigen HEATR1 Induces Functional Cytotoxic T Lymphocytes in Patients with Glioma. Journal of Immunology Research, 2014, 2014, 1-12.	2.2	22
44	Evidence of brain tumor stem progenitor-like cells with low proliferative capacity in human benign pituitary adenoma. Cancer Letters, 2014, 349, 61-66.	7.2	34
45	Astroblastoma: Rare Incidence and Challenges in the Pattern of Care. World Neurosurgery, 2014, 82, e125-e127.	1.3	8
46	To Err Is Humanâ€"Medicolegal Issues and Safe Care in Neurosurgery. World Neurosurgery, 2014, 81, 244-246.	1.3	7
47	B7-H3 and B7-H1 expression in cerebral spinal fluid and tumor tissue correlates with the malignancy grade of glioma patients. Oncology Letters, 2014, 8, 1195-1201.	1.8	51
48	Medulloblastoma in China: Clinicopathologic Analyses of SHH, WNT, and Non-SHH/WNT Molecular Subgroups Reveal Different Therapeutic Responses to Adjuvant Chemotherapy. PLoS ONE, 2014, 9, e99490.	2.5	24
49	Upregulation of chemokine receptor CCR10 is essential for glioma proliferation, invasion and patient survival. Oncotarget, 2014, 5, 6576-6583.	1.8	22
50	Surgically treated incidentally discovered low-grade gliomas are mostly IDH mutated and 1p19q co-deleted with favorable prognosis. International Journal of Clinical and Experimental Pathology, 2014, 7, 8627-36.	0.5	24
51	Treatment of Incidentally Discovered Low-Grade Gliomas: "Watch-and-Wait―or Not?. World Neurosurgery, 2013, 80, e121-e122.	1.3	9
52	Mutation Analysis of IDH1 in Paired Gliomas Revealed IDH1 Mutation Was Not Associated with Malignant Progression but Predicted Longer Survival. PLoS ONE, 2013, 8, e67421.	2.5	25
53	B7-H4 expression is elevated in human U251 glioma stem-like cells and is inducible in monocytes cultured with U251 stem-like cell conditioned medium. Chinese Journal of Cancer, 2013, 32, 653-660.	4.9	12
54	Differential proliferative index of cancer stem-like cells in primary and recurrent medulloblastoma in human. Child's Nervous System, 2012, 28, 1869-1877.	1.1	10

Yu Yao

#	Article	IF	CITATION
55	The CD133+Âtumor stem-like cell-associated antigen may elicit highly intense immune responses against human malignant glioma. Journal of Neuro-Oncology, 2011, 105, 149-157.	2.9	37
56	B7-H1 is correlated with malignancy-grade gliomas but is not expressed exclusively on tumor stem-like cells. Neuro-Oncology, 2009, $11,757-766$.	1.2	80
57	Brain tumor stem cells: view from cell proliferation. World Neurosurgery, 2009, 71, 274-279.	1.3	9
58	B7-H4 is preferentially expressed in non-dividing brain tumor cells and in a subset of brain tumor stem-like cells. Journal of Neuro-Oncology, 2008, 89, 121-129.	2.9	65