## Volodymyr Trotsiuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6397668/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                           | IF         | CITATIONS             |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------|
| 1  | Forest disturbances under climate change. Nature Climate Change, 2017, 7, 395-402.                                                                                                                                                                | 18.8       | 1,561                 |
| 2  | TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.                                                                                                                                           | 9.5        | 1,038                 |
| 3  | Old World megadroughts and pluvials during the Common Era. Science Advances, 2015, 1, e1500561.                                                                                                                                                   | 10.3       | 403                   |
| 4  | A synthesis of radial growth patterns preceding tree mortality. Global Change Biology, 2017, 23, 1675-1690.                                                                                                                                       | 9.5        | 394                   |
| 5  | Early-Warning Signals of Individual Tree Mortality Based on Annual Radial Growth. Frontiers in Plant<br>Science, 2018, 9, 1964.                                                                                                                   | 3.6        | 117                   |
| 6  | Age structure and disturbance dynamics of the relic virgin beech forest Uholka (Ukrainian) Tj ETQq0 0 0 rgBT /Ov                                                                                                                                  | verlock 10 | 0 Tf 50 542 Td<br>109 |
| 7  | Age, competition, disturbance and elevation effects on tree and stand growth response of primary<br>Picea abies forest to climate. Forest Ecology and Management, 2015, 354, 77-86.                                                               | 3.2        | 104                   |
| 8  | The historical disturbance regime of mountain Norway spruce forests in the Western Carpathians and<br>its influence on current forest structure and composition. Forest Ecology and Management, 2017, 388,<br>67-78.                              | 3.2        | 103                   |
| 9  | Landscapeâ€level variability in historical disturbance in primary <i><scp>P</scp>icea abies</i> mountain<br>forests of the <scp>E</scp> astern <scp>C</scp> arpathians, <scp>R</scp> omania. Journal of<br>Vegetation Science, 2014, 25, 386-401. | 2.2        | 99                    |
| 10 | Climate-change-driven growth decline of European beech forests. Communications Biology, 2022, 5, 163.                                                                                                                                             | 4.4        | 89                    |
| 11 | Contrasting effects of environmental change on the radial growth of co-occurring beech and fir trees across Europe. Science of the Total Environment, 2018, 615, 1460-1469.                                                                       | 8.0        | 80                    |
| 12 | Largeâ€ <b>s</b> cale disturbance legacies and the climate sensitivity of primary <i>Picea abies</i> forests.<br>Global Change Biology, 2018, 24, 2169-2181.                                                                                      | 9.5        | 79                    |
| 13 | A mixed severity disturbance regime in the primary Picea abies (L.) Karst. forests of the Ukrainian<br>Carpathians. Forest Ecology and Management, 2014, 334, 144-153.                                                                            | 3.2        | 78                    |
| 14 | More ways than one: Mixed-severity disturbance regimes foster structural complexity via multiple<br>developmental pathways. Forest Ecology and Management, 2017, 406, 410-426.                                                                    | 3.2        | 78                    |
| 15 | When a Tree Dies in the Forest: Scaling Climate-Driven Tree Mortality to Ecosystem Water and Carbon Fluxes. Ecosystems, 2016, 19, 1133-1147.                                                                                                      | 3.4        | 73                    |
| 16 | The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests. Nature Communications, 2022, 13, 28.                                                                                                       | 12.8       | 66                    |
| 17 | Ecosystem dynamics and management after forest dieâ€off: a global synthesis with conceptual<br>stateâ€andâ€transition models. Ecosphere, 2017, 8, e02034.                                                                                         | 2.2        | 56                    |
| 18 | A Combined Tree Ring and Vegetation Model Assessment of European Forest Growth Sensitivity to<br>Interannual Climate Variability. Global Biogeochemical Cycles, 2018, 32, 1226-1240.                                                              | 4.9        | 54                    |

VOLODYMYR TROTSIUK

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Assessing the response of forest productivity to climate extremes in Switzerland using model–data<br>fusion. Global Change Biology, 2020, 26, 2463-2476.                                             | 9.5 | 54        |
| 20 | Profile of tree-related microhabitats in European primary beech-dominated forests. Forest Ecology and Management, 2018, 429, 363-374.                                                                | 3.2 | 45        |
| 21 | Primary forest distribution and representation in a Central European landscape: Results of a large-scale field-based census. Forest Ecology and Management, 2019, 449, 117466.                       | 3.2 | 45        |
| 22 | The climatic drivers of primary <i>Picea</i> forest growth along the Carpathian arc are changing under rising temperatures. Global Change Biology, 2019, 25, 3136-3150.                              | 9.5 | 45        |
| 23 | A climate-sensitive forest model for assessing impacts of forest management in Europe. Environmental<br>Modelling and Software, 2019, 115, 128-143.                                                  | 4.5 | 41        |
| 24 | Testing the efficacy of tree-ring methods for detecting past disturbances. Forest Ecology and Management, 2018, 425, 59-67.                                                                          | 3.2 | 40        |
| 25 | Mixed-severity natural disturbances promote the occurrence of an endangered umbrella species in primary forests. Forest Ecology and Management, 2017, 405, 210-218.                                  | 3.2 | 35        |
| 26 | Historical Disturbances Determine Current Taxonomic, Functional and Phylogenetic Diversity of<br>Saproxylic Beetle Communities in Temperate Primary Forests. Ecosystems, 2021, 24, 37-55.            | 3.4 | 35        |
| 27 | The legacy of disturbance on individual tree and stand-level aboveground biomass accumulation and stocks in primary mountain Picea abies forests. Forest Ecology and Management, 2016, 373, 108-115. | 3.2 | 30        |
| 28 | Quantifying natural disturbances using a largeâ€scale dendrochronological reconstruction to guide forest management. Ecological Applications, 2020, 30, e02189.                                      | 3.8 | 27        |
| 29 | Influence of sampling and disturbance history on climatic sensitivity of temperature-limited conifers.<br>Holocene, 2018, 28, 1574-1587.                                                             | 1.7 | 26        |
| 30 | r3PG – An <scp>r</scp> package for simulating forest growth using the 3â€PG processâ€based model.<br>Methods in Ecology and Evolution, 2020, 11, 1470-1475.                                          | 5.2 | 24        |
| 31 | Tree growth in Switzerland is increasingly constrained by rising evaporative demand. Journal of Ecology, 2021, 109, 2981-2990.                                                                       | 4.0 | 22        |
| 32 | Natural dynamics of temperate mountain beech-dominated primary forests in Central Europe. Forest<br>Ecology and Management, 2021, 479, 118522.                                                       | 3.2 | 21        |
| 33 | Disentangling the multi-faceted growth patterns of primary Picea abies forests in the Carpathian arc.<br>Agricultural and Forest Meteorology, 2019, 271, 214-224.                                    | 4.8 | 20        |
| 34 | Drivers of basal area variation across primary late-successional Picea abies forests of the Carpathian<br>Mountains. Forest Ecology and Management, 2019, 435, 196-204.                              | 3.2 | 19        |
| 35 | Natural disturbance impacts on trade-offs and co-benefits of forest biodiversity and carbon.<br>Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211631.                        | 2.6 | 19        |
| 36 | Calibration of the process-based model 3-PG for major central European tree species. European<br>Journal of Forest Research, 2021, 140, 847-868.                                                     | 2.5 | 18        |

VOLODYMYR TROTSIUK

| #  | Article                                                                                                                                                                                             | IF                       | CITATIONS      |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------|
| 37 | Effects of climate on the growth of Swiss uneven-aged forests: Combining >100Âyears of observations with the 3-PG model. Forest Ecology and Management, 2021, 494, 119271.                          | 3.2                      | 17             |
| 38 | Ecology of <i>Tilia sibirica</i> in a continental hemiboreal forest, southern Siberia: An analogue of a glacial refugium of broad-leaved temperate trees?. Holocene, 2014, 24, 908-918.             | 1.7                      | 16             |
| 39 | Longâ€ŧerm responses of canopy–understorey interactions to disturbance severity in primary <i>Picea<br/>abies</i> forests. Journal of Vegetation Science, 2017, 28, 1128-1139.                      | 2.2                      | 16             |
| 40 | Contrasting patterns of natural mortality in primary Picea forests of the Carpathian Mountains.<br>Forest Ecology and Management, 2020, 457, 117734.                                                | 3.2                      | 16             |
| 41 | Advancing simulations of water fluxes, soil moisture and drought stress by using the LWF-Brook90 hydrological model in R. Agricultural and Forest Meteorology, 2020, 291, 108023.                   | 4.8                      | 16             |
| 42 | Precipitation mediates sap flux sensitivity to evaporative demand in the neotropics. Oecologia, 2019, 191, 519-530.                                                                                 | 2.0                      | 14             |
| 43 | Old trees as a key source of epiphytic lichen persistence and spatial distribution in mountain Norway spruce forests. Biodiversity and Conservation, 2017, 26, 1943-1958.                           | 2.6                      | 13             |
| 44 | Disturbance history is a key driver of tree life span in temperate primary forests. Journal of Vegetation<br>Science, 2021, 32, e13069.                                                             | 2.2                      | 13             |
| 45 | TreeNet–The Biological Drought and Growth Indicator Network. Frontiers in Forests and Global<br>Change, 2021, 4, .                                                                                  | 2.3                      | 13             |
| 46 | Soil–plant interactions modulated water availability of Swiss forests during the 2015 and 2018<br>droughts. Global Change Biology, 2022, 28, 5928-5944.                                             | 9.5                      | 13             |
| 47 | Historical natural disturbances shape spruce primary forest structure and indirectly influence bird assemblage composition. Forest Ecology and Management, 2021, 481, 118647.                       | 3.2                      | 12             |
| 48 | Increased sensitivity to drought across successional stages in natural Norway spruce (Picea abies (L.)) Tj ETQqO                                                                                    | ) 0 <sub>.rg</sub> BT /( | Overlock 10 Ti |
| 49 | Biomass carbon accumulation patterns throughout stand development in primary uneven-aged forest<br>driven by mixed-severity natural disturbances. Forest Ecology and Management, 2020, 455, 117676. | 3.2                      | 9              |
| 50 | Climatic drivers of Picea growth differ during recruitment and interact with disturbance severity to influence rates of canopy replacement. Agricultural and Forest Meteorology, 2020, 287, 107981. | 4.8                      | 9              |
| 51 | Past disturbances and intraspecific competition as drivers of spatial pattern in primary spruce forests.<br>Ecosphere, 2017, 8, e02037.                                                             | 2.2                      | 8              |
| 52 | Axial changes in wood functional traits have limited net effects on stem biomass increment in<br>European beech (Fagus sylvatica). Tree Physiology, 2020, 40, 498-510.                              | 3.1                      | 8              |
| 53 | Historical mixed-severity disturbances shape current diameter distributions of primary temperate<br>Norway spruce mountain forests in Europe. Forest Ecology and Management, 2022, 503, 119772.     | 3.2                      | 8              |
| 54 | Jet stream position explains regional anomalies in European beech forest productivity and tree growth. Nature Communications, 2022, 13, 2015.                                                       | 12.8                     | 8              |

VOLODYMYR TROTSIUK

| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A matter of time: self-regulated tree regeneration in a natural Norway spruce (Picea abies) forest at<br>Mt. Brocken, Germany. European Journal of Forest Research, 2017, 136, 907-921.   | 2.5 | 7         |
| 56 | Patterns of forest dynamics in a secondary old-growth beech-dominated forest in the Jizera<br>Mountains Beech Forest Reserve, Czech Republic. IForest, 2019, 12, 17-26.                   | 1.4 | 7         |
| 57 | Comment on "Opinion paper: Forest management and biodiversity": the role of protected areas is greater than the sum of its number of species. Web Ecology, 2014, 14, 61-64.               | 1.6 | 5         |
| 58 | Multi-aged micro-neighborhood patches challenge the forest cycle model in primeval European beech.<br>IForest, 2020, 13, 209-214.                                                         | 1.4 | 4         |
| 59 | Quantifying Natural Disturbances Using a Largeâ€Scale Dendrochronological Reconstruction to Guide<br>Forest Management. Bulletin of the Ecological Society of America, 2020, 101, e01759. | 0.2 | 2         |
| 60 | Zuwachs und Klimasensitivitävon Baumarten im Ökogramm der kollinen und submontanen Stufe.<br>Schweizerische Zeitschrift Fur Forstwesen, 2015, 166, 380-388.                               | 0.1 | 2         |