
Alok Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6397450/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low temperature additive manufacturing of three dimensional scaffolds for bone-tissue engineering applications: Processing related challenges and property assessment. Materials Science and Engineering Reports, 2016, 103, 1-39.	31.8	175
2	Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: Experimental and computational analysis. Materials Science and Engineering C, 2017, 70, 812-823.	7.3	103
3	On the toughness enhancement in hydroxyapatite-based composites. Acta Materialia, 2013, 61, 5198-5215.	7.9	82
4	Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds. Acta Biomaterialia, 2016, 31, 401-411.	8.3	79
5	Functional response of osteoblasts in functionally gradient titanium alloy mesh arrays processed by 3D additive manufacturing. Colloids and Surfaces B: Biointerfaces, 2017, 150, 78-88.	5.0	72
6	Hydroxyapatiteâ€ŧitanium bulk composites for bone tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2015, 103, 791-806.	4.0	58
7	A Bioactive Hydrogel and 3D Printed Polycaprolactone System for Bone Tissue Engineering. Gels, 2017, 3, 26.	4.5	55
8	The applicability of furfurylâ€gelatin as a novel bioink for tissue engineering applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 314-323.	3.4	54
9	Biodegradable hydrogelâ€based biomaterials with high absorbent properties for nonâ€adherent wound dressing. International Wound Journal, 2017, 14, 1076-1087.	2.9	46
10	Loadâ€bearing biodegradable <scp>PCLâ€PGA</scp> â€beta <scp>TCP</scp> scaffolds for bone tissue regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 193-200.	3.4	46
11	Biological functionality and mechanistic contribution of extracellular matrixâ€ornamented three dimensional Tiâ€6Alâ€4V mesh scaffolds. Journal of Biomedical Materials Research - Part A, 2016, 104, 2751-2763.	4.0	37
12	Design and biological functionality of a novel hybrid Tiâ€6 <scp>A</scp> lâ€4 <scp>V</scp> /hydrogel system for reconstruction of bone defects. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1133-1144.	2.7	33
13	Flow cytometry analysis of human fetal osteoblast fate processes on spark plasma sintered hydroxyapatite–titanium biocomposites. Journal of Biomedical Materials Research - Part A, 2013, 101, 2925-2938.	4.0	31
14	Three-dimensional plotted hydroxyapatite scaffolds with predefined architecture: comparison of stabilization by alginate cross-linking versus sintering. Journal of Biomaterials Applications, 2016, 30, 1168-1181.	2.4	29
15	<i>In vitro</i> bioactivity and cytocompatibility properties of spark plasma sintered HAâ€Ti composites. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101B, 223-236.	3.4	28
16	Attenuation of the in vitro neurotoxicity of 316L SS by graphene oxide surface coating. Materials Science and Engineering C, 2017, 73, 788-797.	7.3	27
17	Fretting wear behaviour of hydroxyapatite–titanium composites in simulated body fluid, supplemented with 5 g l ^{â^'1} bovine serum albumin. Journal Physics D: Applied Physics, 2013, 46, 404004.	2.8	21
18	Understanding the response of pulsed electric field on osteoblast functions in three-dimensional mesh structures. Journal of Biomaterials Applications, 2016, 31, 594-605.	2.4	19

Alok Kumar

#	Article	IF	CITATIONS
19	Cytocompatibility property evaluation of gas pressure sintered SiAlON–SiC composites with L929 fibroblast cells and Saos-2 osteoblast-like cells. Materials Science and Engineering C, 2012, 32, 464-469.	7.3	18
20	Tunable TiO2–pepsin thin film as a low-temperature electron transport layer for photoelectrochemical cells. Materials Technology, 2017, 32, 829-837.	3.0	18
21	Mechanistic contribution of electroconductive hydroxyapatite–titanium disilicide composite on the alignment and proliferation of cells. Journal of Biomaterials Applications, 2016, 30, 1505-1516.	2.4	15
22	Delivery of Mesenchymal Stem Cells from Gelatin–Alginate Hydrogels to Stomach Lumen for Treatment of Gastroparesis. Bioengineering, 2018, 5, 12.	3.5	15
23	Loadâ€bearing biodegradable polycaprolactoneâ€poly (lacticâ€coâ€glycolic acid)―beta triâ€calcium phosphate scaffolds for bone tissue regeneration. Polymers for Advanced Technologies, 2019, 30, 1189-1197.	3.2	14
24	A Contact-Based Method for Differentiation of Human Mesenchymal Stem Cells into an Endothelial Cell-Phenotype. Cell Biochemistry and Biophysics, 2018, 76, 187-195.	1.8	13
25	Hot pressed silver doped hydroxyapatite biomaterials with bactericidal properties against magnetotactic bacteria. Materials Technology, 2014, 29, B21-B25.	3.0	6
26	Flow Cytometry Analysis of Cytotoxicity <i>In Vitro</i> and Longâ€Term Toxicity of <scp>HA</scp> â€40Âwt% BaTiO ₃ Nanoparticles <i>In Vivo</i> . Journal of the American Ceramic Society, 2015, 98, 3202-3211.	3.8	6
27	Effect of iron alloying in evolution of nanostructure and microstructural stability in nickel. Metals and Materials International, 2016, 22, 451-458.	3.4	4
28	Structure–Property Relationship in an Electroconductive Hydroxyapatite–Titanium Disilicide Composite. International Journal of Applied Ceramic Technology, 2016, 13, 773-786.	2.1	3
29	3D Bioprinting for Organs, Skin, and Engineered Tissues. , 2019, , 115-128.		Ο