## **Pavel Simacek**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6397164/publications.pdf Version: 2024-02-01



DAVIEL SIMACEK

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Desirable features in mold filling simulations for Liquid Composite Molding processes. Polymer<br>Composites, 2004, 25, 355-367.                                                                               | 4.6 | 147       |
| 2  | The implications of fiber compaction and saturation on fully coupled VARTM simulation. Composites Part A: Applied Science and Manufacturing, 2004, 35, 159-169.                                                | 7.6 | 122       |
| 3  | A numerical model to predict fiber tow saturation during liquid composite molding. Composites Science and Technology, 2003, 63, 1725-1736.                                                                     | 7.8 | 104       |
| 4  | Permeability characterization of dual scale fibrous porous media. Composites Part A: Applied Science and Manufacturing, 2006, 37, 2057-2068.                                                                   | 7.6 | 96        |
| 5  | Permeability model for a woven fabric. Polymer Composites, 1996, 17, 887-899.                                                                                                                                  | 4.6 | 92        |
| 6  | Analytic characterization of the permeability of dual-scale fibrous porous media. Composites Science and Technology, 2006, 66, 2795-2803.                                                                      | 7.8 | 80        |
| 7  | Process analysis of compression resin transfer molding. Composites Part A: Applied Science and Manufacturing, 2009, 40, 431-441.                                                                               | 7.6 | 68        |
| 8  | Modeling Flow in Compression Resin Transfer Molding for Manufacturing of Complex Lightweight<br>High-Performance Automotive Parts. Journal of Composite Materials, 2008, 42, 2523-2545.                        | 2.4 | 55        |
| 9  | Post-filling flow in vacuum assisted resin transfer molding processes: Theoretical analysis.<br>Composites Part A: Applied Science and Manufacturing, 2009, 40, 913-924.                                       | 7.6 | 54        |
| 10 | Resin flow analysis with fiber preform deformation in through thickness direction during<br>Compression Resin Transfer Molding. Composites Part A: Applied Science and Manufacturing, 2010, 41,<br>881-887.    | 7.6 | 53        |
| 11 | On the variability of permeability induced by reinforcement distortions and dual scale flow in liquid composite moulding: A review. Composites Part A: Applied Science and Manufacturing, 2019, 120, 188-210.  | 7.6 | 50        |
| 12 | Experimental validation of post-filling flow in vacuum assisted resin transfer molding processes.<br>Composites Part A: Applied Science and Manufacturing, 2012, 43, 370-380.                                  | 7.6 | 48        |
| 13 | Characterization of 3D fiber preform permeability tensor in radial flow using an inverse algorithm based on sensors and simulation. Composites Part A: Applied Science and Manufacturing, 2011, 42, 1283-1292. | 7.6 | 40        |
| 14 | Resin film impregnation in fabric prepregs with dual length scale permeability. Composites Part A:<br>Applied Science and Manufacturing, 2013, 53, 118-128.                                                    | 7.6 | 39        |
| 15 | A closed form solution to describe infusion of resin under vacuum in deformable fibrous porous media. Modelling and Simulation in Materials Science and Engineering, 2004, 12, S191-S204.                      | 2.0 | 38        |
| 16 | The effect of fabric and fiber tow shear on dual scale flow and fiber bundle saturation during liquid molding of textile composites. International Journal of Material Forming, 2012, 5, 83-97.                | 2.0 | 38        |
| 17 | A methodology to reduce variability during vacuum infusion with optimized design of distribution media. Composites Part A: Applied Science and Manufacturing, 2015, 78, 223-233.                               | 7.6 | 38        |
| 18 | Modeling resin flow and fiber tow saturation induced by distribution media collapse in VARTM.<br>Composites Science and Technology, 2007, 67, 2757-2769.                                                       | 7.8 | 37        |

PAVEL SIMACEK

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A non-local void filling model to describe its dynamics during processing thermoplastic composites.<br>Composites Part A: Applied Science and Manufacturing, 2013, 46, 154-165.                                                  | 7.6 | 30        |
| 20 | Use of Centroidal Voronoi Diagram to find optimal gate locations to minimize mold filling time in resin transfer molding. Composites Part A: Applied Science and Manufacturing, 2016, 87, 243-255.                               | 7.6 | 27        |
| 21 | A phenomenological model for fiber tow saturation of dual scale fabrics in liquid composite<br>molding. Polymer Composites, 2010, 31, 1881-1889.                                                                                 | 4.6 | 25        |
| 22 | Resin transfer molding (RTM) in polymer matrix composites. , 2012, , 245-309.                                                                                                                                                    |     | 24        |
| 23 | Effect of relative ply orientation on the through-thickness permeability of unidirectional fabrics.<br>Composites Science and Technology, 2014, 96, 116-121.                                                                     | 7.8 | 22        |
| 24 | A process model for the compaction and saturation of partially impregnated thermoset prepreg tapes.<br>Composites Part A: Applied Science and Manufacturing, 2014, 64, 234-244.                                                  | 7.6 | 21        |
| 25 | Use of medial axis to find optimal channel designs to reduce mold filling time in resin transfer molding. Composites Part A: Applied Science and Manufacturing, 2017, 95, 161-172.                                               | 7.6 | 19        |
| 26 | Entrapment and venting of bubbles during vacuum bag prepreg processing. Journal of Composite<br>Materials, 2017, 51, 2757-2768.                                                                                                  | 2.4 | 18        |
| 27 | Simulating tape resin infiltration during thermoset pultrusion process. Composites Part A: Applied Science and Manufacturing, 2015, 72, 115-126.                                                                                 | 7.6 | 17        |
| 28 | Influence of injection gate definition on the flow-front approximation in numerical simulations of mold-filling processes. International Journal for Numerical Methods in Fluids, 2003, 42, 1237-1248.                           | 1.6 | 16        |
| 29 | Gas Evacuation from Partially Saturated Woven Fiber Laminates. Transport in Porous Media, 2016, 115, 541-562.                                                                                                                    | 2.6 | 16        |
| 30 | Role of fiber distribution and air evacuation time on capillary driven flow into fiber tows.<br>Composites Part A: Applied Science and Manufacturing, 2017, 93, 144-152.                                                         | 7.6 | 16        |
| 31 | A new methodology for race-tracking detection and criticality in resin transfer molding process using pressure sensors. Journal of Composite Materials, 2018, 52, 4087-4103.                                                     | 2.4 | 14        |
| 32 | Novel epoxy powder for manufacturing thick-section composite parts under vacuum-bag-only<br>conditions. Part I: Through-thickness process modelling. Composites Part A: Applied Science and<br>Manufacturing, 2020, 136, 105969. | 7.6 | 13        |
| 33 | Resin flow modeling in compliant porous media: an efficient approach for liquid composite molding.<br>International Journal of Material Forming, 2018, 11, 503-515.                                                              | 2.0 | 12        |
| 34 | Prediction of process-induced void formation in anisotropic Fiber-reinforced autoclave composite parts. International Journal of Material Forming, 2020, 13, 143-158.                                                            | 2.0 | 12        |
| 35 | Pathologies associated with the numerical analysis of hyper-anisotropic materials. International Journal for Numerical Methods in Engineering, 1993, 36, 3487-3508.                                                              | 2.8 | 11        |
| 36 | Gate elements at injection locations in numerical simulations of flow through porous media:<br>applications to mold filling. International Journal for Numerical Methods in Engineering, 2004, 61,<br>1501-1519.                 | 2.8 | 10        |

PAVEL SIMACEK

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A model for fibre washout during high injection pressure resin transfer moulding. Journal of<br>Reinforced Plastics and Composites, 2018, 37, 865-876.                                                                             | 3.1 | 10        |
| 38 | Simulation and Validation of Injection-Compression Filling Stage of Liquid Moulding with Fast Curing Resins. Applied Composite Materials, 2019, 26, 41-63.                                                                         | 2.5 | 10        |
| 39 | A continuum approach for consolidation modeling in composites processing. Composites Science and Technology, 2020, 186, 107892.                                                                                                    | 7.8 | 10        |
| 40 | Analytic method to estimate multiple equivalent permeability components from a single rectilinear<br>experiment in liquid composite molding processes. Composites Part A: Applied Science and<br>Manufacturing, 2014, 67, 157-170. | 7.6 | 9         |
| 41 | Gap filling mechanisms during the thin ply Automated Tape Placement process. Composites Part A:<br>Applied Science and Manufacturing, 2021, 147, 106454.                                                                           | 7.6 | 8         |
| 42 | Simulating three-dimensional flow in compression resin transfer molding process. Revue Europeenne<br>Des Elements, 2005, 14, 777-802.                                                                                              | 0.1 | 7         |
| 43 | A method to determine open pore volume with pulse decay. Applied Physics Letters, 2014, 105, .                                                                                                                                     | 3.3 | 7         |
| 44 | Approximate numerical method for prediction of temperature distribution in flow through narrow gaps containing porous media. Computational Mechanics, 2003, 32, 1-9.                                                               | 4.0 | 6         |
| 45 | Experimental parametric study of flowâ€induced fiber washout during highâ€injectionâ€pressure resin<br>transfer molding. Polymer Composites, 2020, 41, 1053-1065.                                                                  | 4.6 | 5         |
| 46 | The Compaction Behavior of Fibrous Preform Materials during the VARTM Infusion. AIP Conference Proceedings, 2007, , .                                                                                                              | 0.4 | 4         |
| 47 | Impact of the Fibre Bed on Resin Viscosity in Liquid Composite Moulding Simulations. Applied<br>Composite Materials, 2012, 19, 669-688.                                                                                            | 2.5 | 2         |
| 48 | Modeling short fiber deformation in dilute suspension: Fiber deposition process. Composites Science and Technology, 2022, 218, 109149.                                                                                             | 7.8 | 2         |
| 49 | A micromechanics model to predict extensional viscosity of aligned long discontinuous fiber suspensions. International Journal of Material Forming, 2019, 12, 777-791.                                                             | 2.0 | 1         |
| 50 | A non-local void dynamics modeling and simulation using the Proper Generalized Decomposition.<br>International Journal of Material Forming, 2020, 13, 533-546.                                                                     | 2.0 | 1         |
| 51 | Effect of the initial resin distribution in partially impregnated thermoplastic prepregs on consolidation. Composites Science and Technology, 2022, 225, 109488.                                                                   | 7.8 | 1         |
| 52 | Experimental validation of co-cure process of honeycomb sandwich structures simulation: adhesive fillet shape and bond-line porosity. Advanced Manufacturing: Polymer and Composites Science, 0, , 1-14.                           | 0.4 | 1         |