Dara Entekhabi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6397126/publications.pdf

Version: 2024-02-01

193 papers 16,457 citations

²⁵⁴²³
59
h-index

124 g-index

197 all docs 197
docs citations

197 times ranked

13223 citing authors

#	Article	IF	CITATIONS
1	The role of model dynamics in ensemble Kalman filter performance for chaotic systems. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 63, 958.	0.8	33
2	Wireless Sensor Network Informed UAV Path Planning for Soil Moisture Mapping. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-13.	2.7	8
3	Regularized Dual-Channel Algorithm for the Retrieval of Soil Moisture and Vegetation Optical Depth From SMAP Measurements. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 102-114.	2.3	13
4	Relationship Between Active and Passive Microwave Signals Over Vegetated Surfaces. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-15.	2.7	1
5	Observed Landscape Responsiveness to Climate Forcing. Water Resources Research, 2022, 58, .	1.7	9
6	Validation of Soil Moisture Data Products From the NASA SMAP Mission. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 364-392.	2.3	62
7	Can Surface Soil Moisture Information Identify Evapotranspiration Regime Transitions?. Geophysical Research Letters, 2022, 49, .	1.5	15
8	Impact of Incidence Angle Diversity on SMOS and Sentinel-1 Soil Moisture Retrievals at Coarse and Fine Scales. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-18.	2.7	2
9	Satellite-Based Assessment of Meteorological and Agricultural Drought in Mainland Southeast Asia. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 6180-6189.	2.3	4
10	Global-scale assessment and inter-comparison of recently developed/reprocessed microwave satellite vegetation optical depth products. Remote Sensing of Environment, 2021, 253, 112208.	4.6	58
11	Landscapeâ€Scale Plant Water Content and Carbon Flux Behavior Following Moisture Pulses: From Dryland to Mesic Environments. Water Resources Research, 2021, 57, e2020WR027592.	1.7	11
12	Patterns of plant rehydration and growth following pulses of soil moisture availability. Biogeosciences, 2021, 18, 831-847.	1.3	21
13	Covariation of Passive–Active Microwave Measurements over Vegetated Surfaces: Case Studies at L-Band Passive and L-, C- and X-Band Active. Remote Sensing, 2021, 13, 1786.	1.8	2
14	A long term global daily soil moisture dataset derived from AMSR-E and AMSR2 (2002–2019). Scientific Data, 2021, 8, 143.	2.4	44
15	Retrievals of soil moisture and vegetation optical depth using a multi-channel collaborative algorithm. Remote Sensing of Environment, 2021, 257, 112321.	4.6	80
16	Detecting forest response to droughts with global observations of vegetation water content. Global Change Biology, 2021, 27, 6005-6024.	4.2	73
17	Simultaneous Retrieval of Surface Roughness Parameters for Bare Soils From Combined Active–Passive Microwave SMAP Observations. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 8182-8194.	2.7	2
18	Global Patterns of Vegetation Response to Short-Term Surface Water Availability. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 8273-8286.	2.3	4

#	Article	IF	CITATIONS
19	Soil Moisture Retrieval Using SMAP L-Band Radiometer and RISAT-1 C-Band SAR Data in the Paddy Dominated Tropical Region of India. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 10644-10664.	2.3	6
20	SMAP Validation Experiment 2019–2022 (SMAPVEX19-22): Detection of Soil Moisture Under Temperate Forest Canopy. , 2021, , .		3
21	Global L-Band Vegetation Volume Fraction Estimates for Modeling Vegetation Optical Depth., 2021,,.		2
22	Achieving Breakthroughs in Global Hydrologic Science by Unlocking the Power of Multisensor, Multidisciplinary Earth Observations. AGU Advances, 2021, 2, e2021AV000455.	2.3	10
23	Time-variations of zeroth-order vegetation absorption and scattering at L-band. Remote Sensing of Environment, 2021, 267, 112726.	4.6	7
24	Evaluation of Surface Melt on the Greenland Ice Sheet Using SMAP $\langle i \rangle L \langle j \rangle$ -Band Microwave Radiometry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 11439-11449.	2.3	11
25	Error Propagation in Microwave Soil Moisture and Vegetation Optical Depth Retrievals. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 11311-11323.	2.3	11
26	River basin salinization as a form of aridity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17635-17642.	3.3	33
27	Partitioning of Historical Precipitation Into Evaporation and Runoff Based on Hydrologic Dynamics Identified With Recent SMAP Satellite Measurements. Water Resources Research, 2020, 56, e2020WR027307.	1.7	7
28	Evaluation of SMAP Core Validation Site Representativeness Errors Using Dense Networks of <i>In Situ</i> Sensors and Random Forests. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 6457-6472.	2.3	6
29	Landâ€Atmosphere Drivers of Landscapeâ€Scale Plant Water Content Loss. Geophysical Research Letters, 2020, 47, e2020GL090331.	1.5	27
30	SMAP Detects Soil Moisture Under Temperate Forest Canopies. Geophysical Research Letters, 2020, 47, e2020GL089697.	1.5	34
31	Terrestrial Evaporation and Moisture Drainage in a Warmer Climate. Geophysical Research Letters, 2020, 47, e2019GL086498.	1.5	13
32	Assessment of Multi-Scale SMOS and SMAP Soil Moisture Products across the Iberian Peninsula. Remote Sensing, 2020, 12, 570.	1.8	28
33	Comprehensive analysis of alternative downscaled soil moisture products. Remote Sensing of Environment, 2020, 239, 111586.	4.6	52
34	Improved SMAP Dual-Channel Algorithm for the Retrieval of Soil Moisture. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 3894-3905.	2.7	62
35	Observation-Driven Estimation of Surface Water Balance Components from SMAP Measurements., 2020, , .		0
36	SMAP Estimates and Science Applications of Vegetation Optical Depth for Global Ecology and Agroecosystems Monitoring. , 2020, , .		0

#	Article	IF	Citations
37	Physics-Based Modeling of Active and Passive Microwave Covariations Over Vegetated Surfaces. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 788-802.	2.7	20
38	Sensitivity of L-band vegetation optical depth to carbon stocks in tropical forests: a comparison to higher frequencies and optical indices. Remote Sensing of Environment, 2019, 232, 111303.	4.6	40
39	Validation of SMAP Soil Moisture Products Using Ground-Based Observations for the Paddy Dominated Tropical Region of India. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 8479-8491.	2.7	25
40	Forward Simulation of Multi-Frequency Microwave Brightness Temperature over Desert Soils in Kuwait and Comparison with Satellite Observations. Remote Sensing, 2019, 11, 1647.	1.8	9
41	Soil and Vegetation Scattering Contributions in L-Band and P-Band Polarimetric SAR Observations. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 8417-8429.	2.7	10
42	Landscape Water Storage and Subsurface Correlation From Satellite Surface Soil Moisture and Precipitation Observations. Water Resources Research, 2019, 55, 9111-9132.	1.7	22
43	Estimation of relative canopy absorption and scattering at L-, C- and X-bands. Remote Sensing of Environment, 2019, 233, 111384.	4.6	24
44	Consistency Between NASS Surveyed Soil Moisture Conditions and SMAP Soil Moisture Observations. Water Resources Research, 2019, 55, 7682-7693.	1.7	10
45	The SMAP and Copernicus Sentinel 1A/B microwave active-passive high resolution surface soil moisture product. Remote Sensing of Environment, 2019, 233, 111380.	4.6	175
46	Short-Term and Long-Term Surface Soil Moisture Memory Time Scales Are Spatially Anticorrelated at Global Scales. Journal of Hydrometeorology, 2019, 20, 1165-1182.	0.7	35
47	Estimation of active-passive microwave covariation using SMAP and Sentinel-1 data. Remote Sensing of Environment, 2019, 225, 458-468.	4.6	25
48	Mapped Hydroclimatology of Evapotranspiration and Drainage Runoff Using SMAP Brightness Temperature Observations and Precipitation Information. Water Resources Research, 2019, 55, 3391-3413.	1.7	16
49	Simultaneous Retrieval of Surface Roughness Parameters from Combined Active-Passive SMAP Observations. , 2019, , .		0
50	A Framework for Retrieving a Time-Varying Effective Scattering Albedo from Satellite Microwave Measurements. , 2019, , .		0
51	Evaluating Brightness Temperature Information for Estimating Microwave Land Surface and Vegetation Properties. , 2019 , , .		0
52	Improving Brightness Temperature Measurements Near Coastal Areas for SMAP. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 4578-4588.	2.3	9
53	Smap Vegetation Optical Depth Retrievals Using The Multi-Temporal Dual-Channel Algorithm., 2019,,.		1
54	Satelliteâ€Based Assessment of Land Surface Energy Partitioning–Soil Moisture Relationships and Effects of Confounding Variables. Water Resources Research, 2019, 55, 10657-10677.	1.7	37

#	Article	IF	Citations
55	Autonomous Moisture Continuum Sensing Network: Intelligent and Energy Efficient in Situ Wireless Sensor Networks in Support of Remote Sensing Missions. , 2019, , .		О
56	Satellite and Station Observations Demonstrate Water Availability's Effect on Continentalâ€Scale Evaporative and Photosynthetic Land Surface Dynamics. Water Resources Research, 2019, 55, 540-554.	1.7	34
57	Characterization of vegetation and soil scattering mechanisms across different biomes using P-band SAR polarimetry. Remote Sensing of Environment, 2018, 209, 107-117.	4.6	13
58	Plant Osmoregulation as an Emergent Waterâ€Saving Adaptation. Water Resources Research, 2018, 54, 2781-2798.	1.7	18
59	Hydrological Storage Length Scales Represented by Remote Sensing Estimates of Soil Moisture and Precipitation. Water Resources Research, 2018, 54, 1476-1492.	1.7	48
60	Soil and Atmospheric Controls on the Land Surface Energy Balance: A Generalized Framework for Distinguishing Moistureâ€Limited and Energyâ€Limited Evaporation Regimes. Water Resources Research, 2018, 54, 1831-1851.	1.7	54
61	Validation of the SMAP freeze/thaw product using categorical triple collocation. Remote Sensing of Environment, 2018, 205, 329-337.	4.6	27
62	The SMAP mission combined active-passive soil moisture product at 9â€km and 3â€km spatial resolutions. Remote Sensing of Environment, 2018, 211, 204-217.	4.6	59
63	Development and assessment of the SMAP enhanced passive soil moisture product. Remote Sensing of Environment, 2018, 204, 931-941.	4.6	297
64	Analysis of the Radar Vegetation Index and Potential Improvements. Remote Sensing, 2018, 10, 1776.	1.8	38
65	A First-Order Radiative Transfer Model for Global Soil Moisture Retrievals Under Vegetation Canopies. , 2018, , .		1
66	Estimating Gravimetric Moisture of Vegetation Using an Attenuation-Based Multi-Sensor Approach. , 2018, , .		7
67	Physics-Based Retrieval of Surface Roughness Parameters for Bare Soils from Combined Active-Passive Microwave Signatures. , 2018, , .		2
68	Precipitation Retrieval Accuracies of the Tropics Constellation of Passive Microwave Cubesats. , 2018, , .		2
69	First-Order Water Balance Studies Using Smap Soil Moisture. , 2018, , .		0
70	Moisture pulse-reserve in the soil-plant continuum observed across biomes. Nature Plants, 2018, 4, 1026-1033.	4.7	75
71	Vegetation Controls on Dryland Salinity. Geophysical Research Letters, 2018, 45, 11,669.	1.5	25
72	Characterization of higher-order scattering from vegetation with SMAP measurements. Remote Sensing of Environment, 2018, 219, 324-338.	4.6	29

#	Article	IF	CITATIONS
73	Partitioning Evapotranspiration Over the Continental United States Using Weather Station Data. Geophysical Research Letters, 2018, 45, 9605-9613.	1.5	22
74	L-band vegetation optical depth seasonal metrics for crop yield assessment. Remote Sensing of Environment, 2018, 212, 249-259.	4.6	69
75	SMAP Soil Moisture Change as an Indicator of Drought Conditions. Remote Sensing, 2018, 10, 788.	1.8	32
76	Estimation of Landscape Soil Water Losses from Satellite Observations of Soil Moisture. Journal of Hydrometeorology, 2018, 19, 871-889.	0.7	41
77	The global distribution and dynamics of surface soil moisture. Nature Geoscience, 2017, 10, 100-104.	5.4	308
78	A Comparative Study of the SMAP Passive Soil Moisture Product With Existing Satellite-Based Soil Moisture Products. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 2959-2971.	2.7	108
79	Surface Soil Moisture Retrieval Using the L-Band Synthetic Aperture Radar Onboard the Soil Moisture Active–Passive Satellite and Evaluation at Core Validation Sites. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 1897-1914.	2.7	64
80	A Method for Upscaling In Situ Soil Moisture Measurements to Satellite Footprint Scale Using Random Forests. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 2663-2673.	2.3	47
81	Combined Radar–Radiometer Surface Soil Moisture and Roughness Estimation. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 4098-4110.	2.7	8
82	Global characterization of surface soil moisture drydowns. Geophysical Research Letters, 2017, 44, 3682-3690.	1.5	87
83	Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nature Geoscience, 2017, 10, 410-414.	5.4	197
84	Role of large eddies in the breakdown of the Reynolds analogy in an idealized mildly unstable atmospheric surface layer. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 2182-2197.	1.0	10
85	Relationship Between Vegetation Microwave Optical Depth and Cross-Polarized Backscatter From Multiyear Aquarius Observations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 4493-4503.	2.3	8
86	L-band vegetation optical depth and effective scattering albedo estimation from SMAP. Remote Sensing of Environment, 2017, 198, 460-470.	4.6	160
87	SMAP Multi-Temporal vegetation optical depth retrieval as an indicator of crop yield trends and crop composition. , $2017, , .$		1
88	Comparison of downscaling techniques for high resolution soil moisture mapping., 2017,,.		2
89	Validation of the SMAP freeze/thaw product using categorical triple collocation. , 2017, , .		2
90	Smap-based retrieval of vegetation opacity and albedo. , 2017, , .		0

#	Article	IF	Citations
91	High-resolution enhanced product based on SMAP active-passive approach using sentinel 1A and 1B SAR data. , 2017, , .		7
92	An initial assessment of SMAP soil moisture retrievals using highâ€resolution model simulations and in situ observations. Geophysical Research Letters, 2016, 43, 9662-9668.	1.5	97
93	Mean-velocity profile of smooth channel flow explained by a cospectral budget model with wall-blockage. Physics of Fluids, 2016, 28, .	1.6	18
94	Assessment of the SMAP Passive Soil Moisture Product. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 4994-5007.	2.7	460
95	Mapping land water and energy balance relations through conditional sampling of remote sensing estimates of atmospheric forcing and surface states. Water Resources Research, 2016, 52, 2737-2752.	1.7	18
96	Active–Passive Disaggregation of Brightness Temperatures During the SMAPVEX12 Campaign. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 6859-6867.	2.7	6
97	Uncertainty Estimates in the SMAP Combined Active–Passive Downscaled Brightness Temperature. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 640-650.	2.7	31
98	Active–Passive Soil Moisture Retrievals During the SMAP Validation Experiment 2012. IEEE Geoscience and Remote Sensing Letters, 2016, 13, 475-479.	1.4	12
99	Vegetation optical depth and scattering albedo retrieval using time series of dual-polarized L-band radiometer observations. Remote Sensing of Environment, 2016, 172, 178-189.	4.6	171
100	An entropyâ€based measure of hydrologic complexity and its applications. Water Resources Research, 2015, 51, 5145-5160.	1.7	22
101	Wavelet correlations to reveal multiscale coupling in geophysical systems. Journal of Geophysical Research D: Atmospheres, 2015, 120, 7555-7572.	1.2	26
102	Sensitivity of Aquarius Active and Passive Measurements Temporal Covariability to Land Surface Characteristics. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 4700-4711.	2.7	36
103	Hydrological extremes in hyperarid regions: A diagnostic characterization of intense precipitation over the Central Arabian Peninsula. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1637-1650.	1.2	31
104	Soil Moisture Retrieval Using L-Band Radar Observations. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 3492-3506.	2.7	58
105	How Many Parameters Can Be Maximally Estimated From a Set of Measurements?. IEEE Geoscience and Remote Sensing Letters, 2015, 12, 1081-1085.	1.4	54
106	Quantifying Precipitation Uncertainty for Land Data Assimilation Applications. Monthly Weather Review, 2015, 143, 3276-3299.	0.5	19
107	Synoptic Preconditions for Extreme Flooding during the Summer Asian Monsoon in the Mumbai Area. Journal of Hydrometeorology, 2014, 15, 229-242.	0.7	4
108	The Effect of Variable Soil Moisture Profiles on P-Band Backscatter. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 6315-6325.	2.7	16

7

#	Article	IF	CITATIONS
109	Ensemble-based characterization of uncertain environmental features. Advances in Water Resources, 2014, 70, 36-50.	1.7	3
110	Uncertainty Analysis of Soil Moisture and Vegetation Indices Using Aquarius Scatterometer Observations. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 4259-4272.	2.7	28
111	An Analogue Approach to Identify Heavy Precipitation Events: Evaluation and Application to CMIP5 Climate Models in the United States. Journal of Climate, 2014, 27, 5941-5963.	1.2	27
112	Application of a hillslope-scale soil moisture data assimilation system to military trafficability assessment. Journal of Terramechanics, 2014, 51, 53-66.	1.4	18
113	Tests of the SMAP Combined Radar and Radiometer Algorithm Using Airborne Field Campaign Observations and Simulated Data. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 2018-2028.	2.7	144
114	Linking Siberian Snow Cover to Precursors of Stratospheric Variability. Journal of Climate, 2014, 27, 5422-5432.	1.2	85
115	Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 2014, 7, 627-637.	5.4	1,729
116	Estimation of land surface water and energy balance parameters using conditional sampling of surface states. Water Resources Research, 2014, 50, 1805-1822.	1.7	19
117	Extended triple collocation: Estimating errors and correlation coefficients with respect to an unknown target. Geophysical Research Letters, 2014, 41, 6229-6236.	1.5	260
118	A multiâ€resolution ensemble study of a tropical urban environment and its interactions with the background regional atmosphere. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9804-9818.	1.2	96
119	Analysis of a two-year meteorological dataset produced on Italian territory with a coupling procedure between a limited area atmospheric model and a sequential MSG-SEVIRI LST assimilation scheme. International Journal of Remote Sensing, 2013, 34, 3561-3586.	1.3	4
120	An assimilation algorithm of satellite-derived LST observations for the operational production of soil moisture maps. , 2012 , , .		1
121	Hydrologic data assimilation with a hillslopeâ€scaleâ€resolving model and L band radar observations: Synthetic experiments with the ensemble Kalman filter. Water Resources Research, 2012, 48, .	1.7	23
122	Flow and Pollutant Transport in Urban Street Canyons of Different Aspect Ratios with Ground Heating: Large-Eddy Simulation. Boundary-Layer Meteorology, 2012, 142, 289-304.	1.2	77
123	Parameter estimation of coupled water and energy balance models based on stationary constraints of surface states. Water Resources Research, 2011, 47, .	1.7	20
124	An alternate and robust approach to calibration for the estimation of land surface model parameters based on remotely sensed observations. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	15
125	An Algorithm for Merging SMAP Radiometer and Radar Data for High-Resolution Soil-Moisture Retrieval. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49, 1504-1512.	2.7	244
126	Effect of Radiative Transfer Uncertainty on L-Band Radiometric Soil Moisture Retrieval. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49, 2686-2698.	2.7	20

#	Article	IF	Citations
127	The Soil Moisture Active Passive (SMAP) applications activity. , 2011, , .		2
128	The Diurnal Behavior of Evaporative Fraction in the Soil–Vegetation–Atmospheric Boundary Layer Continuum. Journal of Hydrometeorology, 2011, 12, 1530-1546.	0.7	111
129	Large-Eddy Simulation of Flow and Pollutant Transport in Urban Street Canyons with Ground Heating. Boundary-Layer Meteorology, 2010, 137, 187-204.	1.2	88
130	The Soil Moisture Active Passive (SMAP) Mission. Proceedings of the IEEE, 2010, 98, 704-716.	16.4	2,546
131	Measurement Scheduling for Soil Moisture Sensing: From Physical Models to Optimal Control. Proceedings of the IEEE, 2010, 98, 1918-1933.	16.4	27
132	A Wireless Soil Moisture Smart Sensor Web Using Physics-Based Optimal Control: Concept and Initial Demonstrations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3, 522-535.	2.3	91
133	The NASA Soil Moisture Active Passive (SMAP) mission: Overview. , 2010, , .		33
134	Probabilistic analysis of the effects of climate change on groundwater recharge. Water Resources Research, 2010, 46, .	1.7	73
135	Reproducibility of soil moisture ensembles when representing soil parameter uncertainty using a Latin Hypercube–based approach with correlation control. Water Resources Research, 2010, 46, .	1.7	15
136	Performance Metrics for Soil Moisture Retrievals and Application Requirements. Journal of Hydrometeorology, 2010, 11, 832-840.	0.7	391
137	The Soil Moisture Active and Passive Mission (SMAP): Science and applications. , 2009, , .		8
138	Using data assimilation to identify diffuse recharge mechanisms from chemical and physical data in the unsaturated zone. Water Resources Research, 2009, 45, .	1.7	29
139	Impact of Hillslope-Scale Organization of Topography, Soil Moisture, Soil Temperature, and Vegetation on Modeling Surface Microwave Radiation Emission. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47, 2557-2571.	2.7	43
140	Conditioning Stochastic Rainfall Replicates on Remote Sensing Data. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47, 2436-2449.	2.7	24
141	A Soil Moisture Smart Sensor Web using Data Assimilation and Optimal Control: Formulation and First Laboratory Demonstration. , 2008, , .		0
142	Comparison of NOWRAD, AMSU, AMSR-E, TMI, and SSM/I surface precipitation rate Retrievals over the united states great plains. , 2007, , .		3
143	Soil Moisture Smart Sensor Web Concept Using Data Assimilation and Optimal Control. , 2007, , .		0
144	Error Propagation of Radar Rainfall Nowcasting Fields through a Fully Distributed Flood Forecasting Model. Journal of Applied Meteorology and Climatology, 2007, 46, 932-940.	0.6	42

#	Article	IF	CITATIONS
145	Analysis of evaporative fraction diurnal behaviour. Agricultural and Forest Meteorology, 2007, 143, 13-29.	1.9	233
146	Hemispheric-scale climate response to Northern Eurasia land surface characteristics and snow anomalies. Global and Planetary Change, 2007, 56, 359-370.	1.6	41
147	Impact of Multiresolution Active and Passive Microwave Measurements on Soil Moisture Estimation Using the Ensemble Kalman Smoother. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45, 1016-1028.	2.7	36
148	Microwave Observatory of Subcanopy and Subsurface (MOSS): A Mission Concept for Global Deep Soil Moisture Observations. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45, 2630-2643.	2.7	46
149	Mapping recharge from space: roadmap to meeting the grand challenge. Hydrogeology Journal, 2007, 15, 105-116.	0.9	25
150	Land surface state and flux estimation using the ensemble Kalman smoother during the Southern Great Plains 1997 field experiment. Water Resources Research, 2006, 42, .	1.7	70
151	A remote sensing observatory for hydrologic sciences: A genesis for scaling to continental hydrology. Water Resources Research, 2006, 42, .	1.7	49
152	Identification of runoff generation spatial distribution using conventional hydrologic gauge time series. Water Resources Research, 2006, 42, .	1.7	12
153	Multiple spaceborne water cycle observations would aid modeling. Eos, 2006, 87, 149.	0.1	4
154	Spatiotemporal Disaggregation of Remotely Sensed Precipitation for Ensemble Hydrologic Modeling and Data Assimilation. Journal of Hydrometeorology, 2006, 7, 511-533.	0.7	16
155	Extending the Predictability of Hydrometeorological Flood Events Using Radar Rainfall Nowcasting. Journal of Hydrometeorology, 2006, 7, 660-677.	0.7	69
156	Assessing the Performance of the Ensemble Kalman Filter for Land Surface Data Assimilation. Monthly Weather Review, 2006, 134, 2128-2142.	0.5	106
157	Evaluating the effects of image filtering in short-term radar rainfall forecasting for hydrological applications. Meteorological Applications, 2006, 13, 289.	0.9	61
158	On the effects of triangulated terrain resolution on distributed hydrologic model response. Hydrological Processes, 2005, 19, 2101-2122.	1.1	88
159	Large-scale atmospheric patterns associated with mesoscale features leading to extreme precipitation events in Northwestern Italy. Advances in Water Resources, 2005, 28, 601-614.	1.7	49
160	Embedding landscape processes into triangulated terrain models. International Journal of Geographical Information Science, 2005, 19, 429-457.	2.2	29
161	An ensemble-based reanalysis approach to land data assimilation. Water Resources Research, 2005, 41, .	1.7	109
162	Estimation of Surface Turbulent Fluxes through Assimilation of Radiometric Surface Temperature Sequences. Journal of Hydrometeorology, 2004, 5, 145-159.	0.7	137

#	Article	IF	Citations
163	Boundary-Layer Entrainment Estimation Through Assimilation of Radiosonde and Micrometeorological Data into a Mixed-Layer Model. Boundary-Layer Meteorology, 2004, 110, 405-433.	1.2	21
164	Catchment hydrologic response with a fully distributed triangulated irregular network model. Water Resources Research, 2004, 40, .	1.7	268
165	Sensitivity of atmospheric response to modeled snow anomaly characteristics. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	75
166	Variational estimation of soil and vegetation turbulent transfer and heat flux parameters from sequences of multisensor imagery. Water Resources Research, 2004, 40, .	1.7	95
167	Preserving high-resolution surface and rainfall data in operational-scale basin hydrology: a fully-distributed physically-based approach. Journal of Hydrology, 2004, 298, 80-111.	2.3	164
168	Generation of Triangulated Irregular Networks Based on Hydrological Similarity. Journal of Hydrologic Engineering - ASCE, 2004, 9, 288-302.	0.8	144
169	Terrain and Multiple-Scale Interactions as Factors in Generating Extreme Precipitation Events. Journal of Hydrometeorology, 2004, 5, 390-404.	0.7	37
170	Orographic Constraints on a Modeled Siberian Snow–Tropospheric–Stratospheric Teleconnection Pathway. Journal of Climate, 2004, 17, 1176-1189.	1.2	26
171	Mapping of Land-Atmosphere Heat Fluxes and Surface Parameters with Remote Sensing Data. Boundary-Layer Meteorology, 2003, 107, 605-633.	1.2	104
172	Relative impacts of Siberian and North American snow anomalies on the winter Arctic Oscillation. Geophysical Research Letters, 2003, 30, .	1.5	50
173	Modeled Northern Hemisphere Winter Climate Response to Realistic Siberian Snow Anomalies. Journal of Climate, 2003, 16, 3917-3931.	1.2	136
174	Land data assimilation and estimation of soil moisture using measurements from the Southern Great Plains 1997 Field Experiment. Water Resources Research, 2002, 38, 35-1-35-18.	1.7	237
175	Hydrologic Data Assimilation with the Ensemble Kalman Filter. Monthly Weather Review, 2002, 130, 103-114.	0.5	785
176	The role of the Siberian high in northern hemisphere climate variability. Geophysical Research Letters, 2001, 28, 299-302.	1.5	200
177	Downscaling of radio brightness measurements for soil moisture estimation: A four-dimensional variational data assimilation approach. Water Resources Research, 2001, 37, 2353-2364.	1.7	180
178	Land data assimilation with satellite measurements for the estimation of surface energy balance components and surface control on evaporation. Water Resources Research, 2001, 37, 1713-1722.	1.7	98
179	Basin hydrologic response relations to distributed physiographic descriptors and climate. Journal of Hydrology, 2001, 247, 169-182.	2.3	91
180	Evolution of Atmospheric Response to Early-Season Eurasian Snow Cover Anomalies. Monthly Weather Review, 2001, 129, 2746-2760.	0.5	94

#	Article	IF	CITATIONS
181	Scale-recursive assimilation of precipitation data. Advances in Water Resources, 2001, 24, 941-953.	1.7	40
182	Eurasian snow cover variability and northern hemisphere climate predictability. Geophysical Research Letters, 1999, 26, 345-348.	1.5	323
183	Estimation of surface heat flux and an index of soil moisture using adjoint-state surface energy balance. Water Resources Research, 1999, 35, 3115-3125.	1.7	89
184	Impact of soil heterogeneity in a mixed-layer model of the planetary boundary layer. Hydrological Sciences Journal, 1998, 43, 633-658.	1.2	15
185	Structure in fluctuations of large-scale soil moisture climate due to external random forcing and internal feedbacks. Stochastic Hydrology & Hydraulics, 1997, 11, 95-114.	0.5	4
186	Mutual interaction of soil moisture state and atmospheric processes. Journal of Hydrology, 1996, 184, 3-17.	2.3	307
187	Passive microwave remote sensing of soil moisture. Journal of Hydrology, 1996, 184, 101-129.	2.3	620
188	Rainstorm statistics conditional on soil moisture index: Temporal and spatial characteristics. Meccanica, 1996, 31, 103-116.	1.2	6
189	On the spatial organization of soil moisture fields. Geophysical Research Letters, 1995, 22, 2757-2760.	1.5	193
190	Hillslope and Climatic Controls on Hydrologic Fluxes. Water Resources Research, 1995, 31, 1725-1739.	1.7	91
191	Equivalent steady soil moisture profile and the time compression approximation in water balance modeling. Water Resources Research, 1994, 30, 2737-2749.	1.7	76
192	The representation of landsurface-atmosphere interaction in atmospheric general circulation models. AIP Conference Proceedings, 1992, , .	0.3	0
193	The quasi-periodic behavior of rainfall variability in Africa and its relationship to the southern oscillation. Archives for Meteorology, Geophysics and Bioclimatology, Series A, 1986, 34, 311-348.	0.4	169