
MichaÅ, RomaÅ, "ski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/639707/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-dose treosulfan in conditioning prior to hematopoietic stem cell transplantation. Expert Opinion on Investigational Drugs, 2010, 19, 1275-1295.	4.1	27
2	Pharmacokinetics of treosulfan and its active monoepoxide in pediatric patients after intravenous infusion of high-dose treosulfan prior to HSCT. European Journal of Pharmaceutical Sciences, 2015, 68, 87-93.	4.0	27
3	HPLC method for determination of biologically active epoxy-transformers of treosulfan in human plasma: Pharmacokinetic application. Journal of Pharmaceutical and Biomedical Analysis, 2012, 62, 105-113.	2.8	21
4	Activation of Prodrug Treosulfan at pH 7.4 and 37°C Accompanied by Hydrolysis of Its Active Epoxides: Kinetic Studies with Clinical Relevance. Journal of Pharmaceutical Sciences, 2015, 104, 4433-4442.	3.3	20
5	Determination of partition coefficients n-octanol/water for treosulfan and its epoxy-transformers: An example of a negative correlation between lipophilicity of unionized compounds and their retention in reversed-phase chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 2013. 923-924. 92-97.	2.3	16
6	Treosulfan Pharmacokinetics and its Variability in Pediatric and Adult Patients Undergoing Conditioning Prior to Hematopoietic Stem Cell Transplantation: Current State of the Art, In-Depth Analysis, and Perspectives. Clinical Pharmacokinetics, 2018, 57, 1255-1265.	3.5	16
7	Kinetic and Mechanistic Study of the pH-Dependent Activation (Epoxidation) of Prodrug Treosulfan Including the Reaction Inhibition in a Borate Buffer. Journal of Pharmaceutical Sciences, 2017, 106, 1917-1922.	3.3	15
8	Direct high-performance liquid chromatography method with refractometric detection designed for stability studies of treosulfan and its biologically active epoxy-transformers. Journal of Pharmaceutical and Biomedical Analysis, 2013, 72, 145-149.	2.8	12
9	Rapid and sensitive liquid chromatography-tandem mass spectrometry method for determination of protein-free pro-drug treosulfan and its biologically active monoepoxy-transformer in plasma and brain tissue. Talanta, 2014, 127, 123-132.	5.5	11
10	Formation Rate–Limited Pharmacokinetics of Biologically Active Epoxy Transformers of Prodrug Treosulfan. Journal of Pharmaceutical Sciences, 2016, 105, 1790-1797.	3.3	11
11	Penetration of Treosulfan and its Active Monoepoxide Transformation Product into Central Nervous System of Juvenile and Young Adult Rats. Drug Metabolism and Disposition, 2015, 43, 1946-1954.	3.3	10
12	Disposition of treosulfan and its active monoepoxide in a bone marrow, liver, lungs, brain, and muscle: Studies in a rat model with clinical relevance. European Journal of Pharmaceutical Sciences, 2017, 109, 616-623.	4.0	10
13	Determination of prodrug treosulfan and its biologically active monoepoxide in rat plasma, liver, lungs, kidneys, muscle, and brain by HPLC–ESI–MS/MS method. Journal of Pharmaceutical and Biomedical Analysis, 2017, 140, 122-129.	2.8	8
14	Effect of Temperature on the Kinetics of the Activation of Treosulfan and Hydrolytic Decomposition of Its Active Epoxy Derivatives. Journal of Pharmaceutical Sciences, 2017, 106, 3156-3160.	3.3	7
15	In Vivo Red Blood Cells/Plasma Partition Coefficient of Treosulfan and Its Active Monoepoxide in Rats. European Journal of Drug Metabolism and Pharmacokinetics, 2018, 43, 565-571.	1.6	7
16	Kinetics of <i>in Vitro</i> Guanine- <i>N</i> 7-Alkylation in Calf Thymus DNA by (2 <i>S</i> ,3 <i>S</i>)-1,2-Epoxybutane-3,4-diol 4-methanesulfonate and (2 <i>S</i> ,3 <i>S</i>)-1,2:3,4-Diepoxybutane: Revision of the Mechanism of DNA Cross-Linking by the Prodrug Treosulfan. Molecular Pharmaceutics, 2019, 16, 2708-2718.	4.6	6
17	The Influence of Paracetamol on the Penetration of Sorafenib and Sorafenib N-Oxide Through the Blood–Brain Barrier in Rats. European Journal of Drug Metabolism and Pharmacokinetics, 2020, 45, 801-808.	1.6	6
18	Ocular disposition of treosulfan and its active epoxy-transformers following intravenous administration in rabbits. Drug Metabolism and Pharmacokinetics, 2016, 31, 356-362.	2.2	4

#	Article	IF	CITATIONS
19	N-7-Guanine Adduct of the Active Monoepoxide of Prodrug Treosulfan: First Synthesis, Characterization, and Decomposition Profile Under Physiological Conditions. Journal of Pharmaceutical Sciences, 2018, 107, 2927-2937.	3.3	4
20	In Vitro Study of the Enzymatic and Nonenzymatic Conjugation of Treosulfan with Glutathione. European Journal of Drug Metabolism and Pharmacokinetics, 2019, 44, 653-657.	1.6	3
21	Clinical bioanalysis of treosulfan and its epoxides: The importance of collected blood processing for valid pharmacokinetic results. Journal of Pharmaceutical and Biomedical Analysis, 2018, 153, 199-203.	2.8	1
22	Liquid chromatography–tandem mass spectrometry method for simultaneous determination of three N-7-guanine adducts of the active epoxides of prodrug treosulfan in DNA in vitro. Talanta, 2019, 198, 464-471.	5.5	1
23	Population pharmacokinetic approach for evaluation of treosulfan and its active monoepoxide disposition in plasma and brain on the basis of a rat model. Pharmacological Reports, 2020, 72, 1297-1309.	3.3	0