Lars N G Nilsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6396953/publications.pdf

Version: 2024-02-01

65 papers

3,218 citations

147801 31 h-index 55 g-index

68 all docs 68
docs citations

68 times ranked 4081 citing authors

#	Article	IF	CITATIONS
1	Translation of the Alzheimer Amyloid Precursor Protein mRNA Is Up-regulated by Interleukin-1 through 5′-Untranslated Region Sequences. Journal of Biological Chemistry, 1999, 274, 6421-6431.	3.4	256
2	The Arctic Alzheimer mutation facilitates early intraneuronal $\hat{Al^2}$ aggregation and senile plaque formation in transgenic mice. Neurobiology of Aging, 2006, 27, 67-77.	3.1	221
3	Imaging Distinct Conformational States of Amyloid-β Fibrils in Alzheimer's Disease Using Novel Luminescent Probes. ACS Chemical Biology, 2007, 2, 553-560.	3.4	177
4	Glial activation and inflammation along the Alzheimer's disease continuum. Journal of Neuroinflammation, 2019, 16, 46.	7.2	175
5	Sensitive ELISA detection of amyloid $\hat{a} \in \hat{l}^2$ protofibrils in biological samples. Journal of Neurochemistry, 2007, 103, 334-345.	3.9	174
6	Loss of Astrocyte Polarization in the Tg-ArcSwe Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2011, 27, 711-722.	2.6	165
7	\hat{l} ±-1-Antichymotrypsin Promotes \hat{l} 2-Sheet Amyloid Plaque Deposition in a Transgenic Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2001, 21, 1444-1451.	3.6	133
8	Cerebrospinal fluid soluble TREM2 in aging and Alzheimer's disease. Alzheimer's Research and Therapy, 2016, 8, 17.	6.2	105
9	An amyloid- \hat{l}^2 protofibril-selective antibody prevents amyloid formation in a mouse model of Alzheimer's disease. Neurobiology of Disease, 2009, 36, 425-434.	4.4	89
10	Amyloidâ \in 0ligomers are inefficiently measured by enzymeâ \in inked immunosorbent assay. Annals of Neurology, 2005, 58, 147-150.	5.3	88
11	Animal models of amyloidâ€Î²â€related pathologies in Alzheimer's disease. FEBS Journal, 2010, 277, 1389-14	409.7	87
12	The inflammation-induced pathological chaperones ACT and apo-E are necessary catalysts of Alzheimer amyloid formation. Neurobiology of Aging, 2001, 22, 923-930.	3.1	79
13	Amyloidâ€Î² protofibril levels correlate with spatial learning in Arctic Alzheimer's disease transgenic mice. FEBS Journal, 2009, 276, 995-1006.	4.7	79
14	A highly insoluble state of ${\rm A\hat{I}^2}$ similar to that of Alzheimer's disease brain is found in Arctic APP transgenic mice. Neurobiology of Aging, 2009, 30, 1393-1405.	3.1	79
15	Heparan Sulfate Accumulation with ${\hat Al^2}$ Deposits in Alzheimer's Disease and Tg2576 Mice is Contributed by Glial Cells. Brain Pathology, 2008, 18, 548-561.	4.1	71
16	Cognitive impairment in PDAPP mice depends on ApoE and ACT-catalyzed amyloid formation. Neurobiology of Aging, 2004, 25, 1153-1167.	3.1	70
17	Specific Uptake of an Amyloid-l ² Protofibril-Binding Antibody-Tracer in Al ² PP Transgenic Mouse Brain. Journal of Alzheimer's Disease, 2013, 37, 29-40.	2.6	65
18	The Alzheimer's disease risk factors apolipoprotein E and TREM2 are linked in a receptor signaling pathway. Journal of Neuroinflammation, 2017, 14, 59.	7.2	59

#	Article	IF	Citations
19	Heparanase overexpression impairs inflammatory response and macrophage-mediated clearance of amyloid- \hat{l}^2 in murine brain. Acta Neuropathologica, 2012, 124, 465-478.	7.7	57
20	Regional distribution of somatostatin receptor binding and modulation of adenylyl cyclase activity in Alzheimer's disease brain. Journal of the Neurological Sciences, 1991, 105, 225-233.	0.6	56
21	The Arctic Alzheimer mutation favors intracellular amyloid- \hat{l}^2 production by making amyloid precursor protein less available to \hat{l}_\pm -secretase. Journal of Neurochemistry, 2007, 101, 854-862.	3.9	55
22	Docosahexaenoic acid stimulates nonâ€amyloidogenic APP processing resulting in reduced Aβ levels in cellular models of Alzheimer's disease. European Journal of Neuroscience, 2007, 26, 882-889.	2.6	51
23	Elevated MARK2-Dependent Phosphorylation of Tau in Alzheimer's Disease. Journal of Alzheimer's Disease, 2013, 33, 699-713.	2.6	48
24	Genetic Deletion and Pharmacological Inhibition of Nogo-66 Receptor Impairs Cognitive Outcome after Traumatic Brain Injury in Mice. Journal of Neurotrauma, 2010, 27, 1297-1309.	3.4	42
25	Impaired behavior of female tg-ArcSwe APP mice in the IntelliCage: A longitudinal study. Behavioural Brain Research, 2010, 215, 83-94.	2.2	41
26	Overexpression of Heparanase Lowers the Amyloid Burden in Amyloid- \hat{l}^2 Precursor Protein Transgenic Mice. Journal of Biological Chemistry, 2015, 290, 5053-5064.	3.4	41
27	Observations in APP Bitransgenic Mice Suggest that Diffuse and Compact Plaques Form via Independent Processes in Alzheimer's Disease. American Journal of Pathology, 2011, 178, 2286-2298.	3.8	38
28	The Arctic AβPP mutation leads to Alzheimer's disease pathology with highly variable topographic deposition of differentially truncated Aβ. Acta Neuropathologica Communications, 2013, 1, 60.	5.2	38
29	Use of multimetric statistical analysis to characterize and discriminate between the performance of four Alzheimer's transgenic mouse lines differing in Aβ deposition. Behavioural Brain Research, 2004, 153, 107-121.	2.2	37
30	Appearance of <i>Cxcl10</i> à€expressing cell clusters is common for traumatic brain injury and neurodegenerative disorders. European Journal of Neuroscience, 2010, 31, 852-863.	2.6	36
31	CSF sTREM2 in deliriumâ€"relation to Alzheimer's disease CSF biomarkers Aβ42, t-tau and p-tau. Journal of Neuroinflammation, 2018, 15, 304.	7.2	36
32	Sensitive detection of $\hat{Al^2}$ protofibrils by proximity ligation - relevance for Alzheimer's disease. BMC Neuroscience, 2010, 11, 124.	1.9	33
33	The Arctic amyloid- \hat{l}^2 precursor protein (A \hat{l}^2 PP) mutation results in distinct plaques and accumulation of N- and C-truncated A \hat{l}^2 . Neurobiology of Aging, 2012, 33, 1010.e1-1010.e13.	3.1	31
34	The CCAAT/enhancer binding protein (C/EBP) \hat{l} is differently regulated by fibrillar and oligomeric forms of the Alzheimer amyloid- \hat{l}^2 peptide. Journal of Neuroinflammation, 2011, 8, 34.	7.2	28
35	Effect of cytokines, dexamethazone and the A/T-signal peptide polymorphism on the expression of alpha1-antichymotrypsin in astrocytes: significance for Alzheimer's disease. Neurochemistry International, 2001, 39, 361-370.	3.8	27
36	Transient OGG1, APE1, PARP1 and $Pol\hat{l}^2$ expression in an Alzheimer's disease mouse model. Mechanisms of Ageing and Development, 2013, 134, 467-477.	4.6	25

#	Article	IF	CITATIONS
37	Environmental influence on somatostatin levels and gene expression in the rat brain. Brain Research, 1993, 628, 93-98.	2.2	24
38	Cerebrospinal fluid sTREM2 in Alzheimer's disease: comparisons between clinical presentation and AT classification. Scientific Reports, 2020, 10, 15886.	3.3	23
39	The <i>Uppsala APP</i> i> deletion causes early onset autosomal dominant Alzheimer's disease by altering APP processing and increasing amyloid β fibril formation. Science Translational Medicine, 2021, 13, .	12.4	23
40	Important Role of Hepatitis C Virus Infection as a Cause of Chronic Liver Disease in Somalia. Scandinavian Journal of Infectious Diseases, 1993, 25, 559-564.	1.5	19
41	Brainwide distribution and variance of amyloid-beta deposits in tg-ArcSwe mice. Neurobiology of Aging, 2014, 35, 556-564.	3.1	19
42	Elevated mRNA-Levels of Gonadotropin-Releasing Hormone and Its Receptor in Plaque-Bearing Alzheimer's Disease Transgenic Mice. PLoS ONE, 2014, 9, e103607.	2.5	19
43	Genetic and pharmacological evidence of intraneuronal $\hat{Al^2}$ accumulation in APP transgenic mice. FEBS Letters, 2009, 583, 3021-3026.	2.8	18
44	A high cerebrospinal fluid soluble TREM2 level is associated with slow clinical progression of Alzheimer's disease. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2020, 12, e12128.	2.4	16
45	Effects of nucleus basalis lesion on muscarinic receptor subtypes. Experimental Brain Research, 1993, 97, 225-32.	1.5	15
46	Increased mRNA Levels of <i>TCF7L2 </i> and <i>MYC </i> of the Wnt Pathway in Tg-ArcSwe Mice and Alzheimer's Disease Brain. International Journal of Alzheimer's Disease, 2011, 2011, 1-7.	2.0	15
47	CSF sTREM2 and Tau Work Together in Predicting Increased Temporal Lobe Atrophy in Older Adults. Cerebral Cortex, 2020, 30, 2295-2306.	2.9	15
48	Impaired astrocytic Ca2+ signaling in awake-behaving Alzheimer's disease transgenic mice. ELife, 0, 11, .	6.0	15
49	Apolipoprotein is required for the formation of filamentous amyloid, but not for amorphous AÎ ² deposition, in an AÎ ² PP/PS double transgenic mouse model of Alzheimer's disease. Journal of Alzheimer's Disease, 2004, 6, 509-514.	2.6	13
50	Lack of exon 10 in the murine tau gene results in mild sensorimotor defects with aging. BMC Neuroscience, 2013, 14, 148.	1.9	11
51	USE OF FUSED CIRCULATIONS TO INVESTIGATE THE ROLE OF APOLIPOPROTEIN E AS AMYLOID CATALYST AND PERIPHERAL SINK IN ALZHEIMER'S DISEASE. Technology and Innovation, 2012, 14, 199-208.	0.2	10
52	¹¹ C and ¹⁸ F Radiolabeling of Tetra- and Pentathiophenes as PET-Ligands for Amyloid Protein Aggregates. ACS Medicinal Chemistry Letters, 2016, 7, 368-373.	2.8	10
53	Systemic LPS-induced A \hat{I}^2 -solubilization and clearance in A \hat{I}^2 PP-transgenic mice is diminished by heparanase overexpression. Scientific Reports, 2019, 9, 4600.	3.3	10
54	Characterization and quantification of 125I-bolton hunter substance P binding sites in human brain. Neurochemistry International, 1991, 18, 399-404.	3.8	9

#	Article	IF	Citations
55	Identification of amyloid beta mid-domain fragments in human cerebrospinal fluid. Biochimie, 2015, 113, 86-92.	2.6	8
56	Decrease of somatostatin receptor binding in the rat cerebral cortex after ibotenic acid lesion of the nucleus basalis magnocellularis: a quantitative autoradiographic study. Brain Research, 1993, 628, 31-38.	2.2	7
57	Isobaric Quantification of Cerebrospinal Fluid Amyloid-β Peptides in Alzheimer's Disease: C-Terminal Truncation Relates to Early Measures of Neurodegeneration. Journal of Proteome Research, 2015, 14, 4834-4843.	3.7	7
58	Coexistence of somatostatin receptor subtypes in the human neuroblastoma cell line LA-N-2. FEBS Letters, 1997, 401, 83-88.	2.8	6
59	Somatostatinergic phenotype markers in the human neuroblastoma cell-line LA-N-2. FEBS Letters, 1995, 372, 88-92.	2.8	4
60	Influence of place learning on somatostatin levels in the rat brain following environmental deprivation. Regulatory Peptides, 1995, 58, 11-18.	1.9	3
61	Analyzing microglial-associated Aβ in Alzheimer's disease transgenic mice with a novel mid-domain Aβ-antibody. Scientific Reports, 2020, 10, 10590.	3.3	3
62	Translating research on brain aging into public health: a new type of immunotherapy for Alzheimer's disease. Nutrition Reviews, 2010, 68, S128-S134.	5.8	2
63	Diminution of preprosomatostatin-mRNA in cerebral cortex of the aged rat. Neurochemistry International, 1995, 27, 481-487.	3.8	1
64	An improved CPRG colorimetric ligand-receptor signal transduction assay based on beta-galactosidase activity in mammalian BWZ-reporter cells. Journal of Pharmacological and Toxicological Methods, 2018, 90, 67-75.	0.7	1
65	Local impact of perivascular plaques on cerebral blood flow dynamics in a transgenic mouse model of Alzheimer's disease. , 2008, , .		0