
Vera I Slaveykova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6396533/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Light-trapped caddisflies to decipher the role of species traits and habitats in Hg accumulation and transfer. Chemosphere, 2022, 287, 131909.	8.2	0
2	Dual role of titanium dioxide nanoparticles in the accumulation of inorganic and methyl mercury by crustacean Daphnia magna through waterborne and dietary exposure. Environmental Pollution, 2022, 295, 118619.	7.5	3
3	Asymmetrical Flow Field-Flow Fractionation Methods for Quantitative Determination and Size Characterization of Thiols and for Mercury Size Speciation Analysis in Organic Matter-Rich Natural Waters. Frontiers in Chemistry, 2022, 10, 800696.	3.6	2
4	Kinetic Aspects of the Interactions between TiO2 Nanoparticles, Mercury and the Green Alga Chlamydomonas reinhardtii. Environments - MDPI, 2022, 9, 44.	3.3	1
5	Simple Acid Digestion Procedure for the Determination of Total Mercury in Plankton by Cold Vapor Atomic Fluorescence Spectroscopy. Methods and Protocols, 2022, 5, 29.	2.0	10
6	Metabolic alterations in alga <i>Chlamydomonas reinhardtii</i> exposed to nTiO ₂ materials. Environmental Science: Nano, 2022, 9, 2922-2938.	4.3	5
7	Role of phytoplankton in aquatic mercury speciation and transformations. Environmental Chemistry, 2022, 19, 104-115.	1.5	9
8	Academic expertise in assisting private companies in the fields of environment and environmental toxicology: the role of individual expertise. Environmental Science and Pollution Research, 2021, 28, 1283-1286.	5.3	0
9	Distinguishing the effects of Ce nanoparticles from their dissolution products: identification of transcriptomic biomarkers that are specific for ionic Ce in Chlamydomonas reinhardtii. Metallomics, 2021, 13, .	2.4	1
10	The interplay of flow processes shapes aquatic invertebrate successions in floodplain channels - A modelling applied to restoration scenarios. Science of the Total Environment, 2021, 750, 142081.	8.0	8
11	Metabolomic Responses of Green Alga <i>Chlamydomonas reinhardtii</i> Exposed to Sublethal Concentrations of Inorganic and Methylmercury. Environmental Science & Technology, 2021, 55, 3876-3887.	10.0	46
12	Morphological plasticity in Chlamydomonas reinhardtii and acclimation to micropollutant stress. Aquatic Toxicology, 2021, 231, 105711.	4.0	15
13	Editorial: Biogeochemistry of Anthropogenic Particles. Frontiers in Environmental Science, 2021, 9, .	3.3	0
14	Interactions of Metal-Containing Nanomaterials with Microorganisms. , 2021, , 38-57.		0
15	Mercury mobility, colloid formation and methylation in a polluted Fluvisol as affected by manure application and flooding–draining cycle. Biogeosciences, 2021, 18, 3445-3465.	3.3	6
16	Microbial community diversity and composition in river sediments contaminated with tetrabromobisphenol A and copper. Chemosphere, 2021, 272, 129855.	8.2	9
17	Determination of the Intracellular Complexation of Inorganic and Methylmercury in Cyanobacterium <i>Synechocystis</i> sp. PCC 6803. Environmental Science & Technology, 2021, 55, 13971-13979.	10.0	7
18	Polystyrene Nanoplastic Behavior and Toxicity on Crustacean Daphnia magna: Media Composition, Size, and Surface Charge Effects. Environments - MDPI, 2021, 8, 101.	3.3	14

#	Article	IF	CITATIONS
19	Species-specific isotope tracking of mercury uptake and transformations by pico-nanoplankton in an eutrophic lake. Environmental Pollution, 2021, 288, 117771.	7.5	11

Trees as sentinels of metallic pollution induced by mining along the Odiel River (Southern Iberian) Tj ETQq0 0 0 rgBI $_{1.1}$ Overlock 10 Tf 50

21	Prevalence of β-Lactam and Sulfonamide Resistance Genes in a Freshwater Reservoir, Lake Brêt, Switzerland. Exposure and Health, 2020, 12, 187-197.	4.9	7
22	Metabolomics for early detection of stress in freshwater alga Poterioochromonas malhamensis exposed to silver nanoparticles. Scientific Reports, 2020, 10, 20563.	3.3	32
23	A density gradient centrifugation method for rapid separation of nanoTiO2 and TiO2 aggregates from microalgal cells in complex mixtures with mercury. MethodsX, 2020, 7, 101057.	1.6	3
24	NanoTiO2 materials mitigate mercury uptake and effects on green alga Chlamydomonas reinhardtii in mixture exposure. Aquatic Toxicology, 2020, 224, 105502.	4.0	7
25	Impact of anthropogenic activities on the occurrence and distribution of toxic metals, extending-spectra l²-lactamases and carbapenem resistance in sub-Saharan African urban rivers. Science of the Total Environment, 2020, 727, 138129.	8.0	29
26	Interaction of silver nanoparticles with antioxidant enzymes. Environmental Science: Nano, 2020, 7, 1507-1517.	4.3	51
27	When Environmental Chemistry Meets Ecotoxicology: Bioavailability of Inorganic Nanoparticles to Phytoplankton. Chimia, 2020, 74, 115-121.	0.6	11
28	Natural Nanoparticles, Anthropogenic Nanoparticles, Where Is the Frontier?. Frontiers in Environmental Science, 2020, 8, .	3.3	49
29	Effects of Mixtures of Engineered Nanoparticles and Metallic Pollutants on Aquatic Organisms. Environments - MDPI, 2020, 7, 27.	3.3	29
30	When scientists become detectives: investigating systematic tree poisoning in a protected cove. Heliyon, 2020, 6, e03386.	3.2	1
31	Colloidal Size and Redox State of Uranium Species in the Porewater of a Pristine Mountain Wetland. Environmental Science & Technology, 2019, 53, 9361-9369.	10.0	21
32	Insect Life Traits Are Key Factors in Mercury Accumulation and Transfer within the Terrestrial Food Web. Environmental Science & Technology, 2019, 53, 11122-11132.	10.0	22
33	Biogeochemical Dynamics Research in the Anthropocene. Frontiers in Environmental Science, 2019, 7, .	3.3	3
34	Towards early-warning gene signature of Chlamydomonas reinhardtii exposed to Hg-containing complex media. Aquatic Toxicology, 2019, 214, 105259.	4.0	5
35	Recycling, reuse, and circular economy: a challenge for ecotoxicological research. Environmental Science and Pollution Research, 2019, 26, 22097-22100.	5.3	11
36	Influence of nanoplastic surface charge on eco-corona formation, aggregation and toxicity to freshwater zooplankton. Environmental Pollution, 2019, 252, 715-722.	7.5	162

#	Article	IF	CITATIONS
37	Seasonal and spatial variation in hydrochemical parameters of Lake Onego (Russia): insights from 2016 field monitoring. Inland Waters, 2019, 9, 227-238.	2.2	15
38	Comparative study of Cu uptake and early transcriptome responses in the green microalga Chlamydomonas reinhardtii and the macrophyte Elodea nuttallii. Environmental Pollution, 2019, 250, 331-337.	7.5	19
39	Long-Term Effects of Mercury on Biofilms Grown in Contaminated Microcosms: A Pilot Study. Environments - MDPI, 2019, 6, 28.	3.3	1
40	Upward mercury transfer by anecic earthworms in a contaminated soil. European Journal of Soil Biology, 2019, 91, 32-37.	3.2	5
41	Dissolved Organic Matter and Associated Trace Metal Dynamics from River to Lake, Under Ice-Covered and Ice-Free Conditions. Environmental Science & amp; Technology, 2019, 53, 14134-14143.	10.0	15
42	Species-species interactions modulate copper toxicity under different visible light conditions. Ecotoxicology and Environmental Safety, 2019, 170, 771-777.	6.0	8
43	Biological effects of four iron-containing nanoremediation materials on the green alga Chlamydomonas sp Ecotoxicology and Environmental Safety, 2018, 154, 36-44.	6.0	23
44	Effects of two-hour exposure to environmental and high concentrations of methylmercury on the transcriptome of the macrophyte Elodea nuttallii. Aquatic Toxicology, 2018, 194, 103-111.	4.0	10
45	High contamination in the areas surrounding abandoned mines and mining activities: An impact assessment of the Dilala, Luilu and Mpingiri Rivers, Democratic Republic of the Congo. Chemosphere, 2018, 191, 1008-1020.	8.2	43
46	Modeling whole body trace metal concentrations in aquatic invertebrate communities: A trait-based approach. Environmental Pollution, 2018, 233, 419-428.	7.5	8
47	Preface: Special Issue on Environmental Toxicology of Trace Metals. Environments - MDPI, 2018, 5, 138.	3.3	7
48	Molecular Effects of Inorganic and Methyl Mercury in Aquatic Primary Producers: Comparing Impact to A Macrophyte and A Green Microalga in Controlled Conditions. Geosciences (Switzerland), 2018, 8, 393.	2.2	18
49	Combined Effects of Trace Metals and Light on Photosynthetic Microorganisms in Aquatic Environment. Environments - MDPI, 2018, 5, 81.	3.3	13
50	Probing Contaminant-Induced Alterations in Chlorophyll Fluorescence by AC-Dielectrophoresis-Based 2D-Algal Array. Biosensors, 2018, 8, 15.	4.7	4
51	Green Synthesis of Metal and Metal Oxide Nanoparticles and Their Effect on the Unicellular Alga Chlamydomonas reinhardtii. Nanoscale Research Letters, 2018, 13, 159.	5.7	76
52	Molecular Effects, Speciation, and Competition of Inorganic and Methyl Mercury in the Aquatic Plant <i>Elodea nuttallii</i> . Environmental Science & Technology, 2018, 52, 8876-8884.	10.0	19
53	Lateral and longitudinal patterns of water physico-chemistry and trace metal distribution and partitioning in a large river floodplain. Science of the Total Environment, 2017, 587-588, 248-257.	8.0	8
54	Toward Quantitative Understanding of the Bioavailability of Dissolved Organic Matter in Freshwater Lake during Cyanobacteria Blooming. Environmental Science & Technology, 2017, 51, 6018-6026.	10.0	85

#	Article	IF	CITATIONS
55	Transcriptomic approach for assessment of the impact on microalga and macrophyte of in-situ exposure in river sites contaminated by chlor-alkali plant effluents. Water Research, 2017, 121, 86-94.	11.3	20
56	Exposure to sublethal concentrations of Co3O4 and Mn2O3 nanoparticles induced elevated metal body burden in Daphnia magna. Aquatic Toxicology, 2017, 189, 123-133.	4.0	20
57	Biofilm composition in the Olt River (Romania) reservoirs impacted by a chlor-alkali production plant. Environmental Sciences: Processes and Impacts, 2017, 19, 687-695.	3.5	6
58	Cellular toxicity pathways of inorganic and methyl mercury in the green microalga Chlamydomonas reinhardtii. Scientific Reports, 2017, 7, 8034.	3.3	59
59	Mercury bioavailability, transformations, and effects on freshwater biofilms. Environmental Toxicology and Chemistry, 2017, 36, 3194-3205.	4.3	28
60	Non-invasive continuous monitoring of pro-oxidant effects of engineered nanoparticles on aquatic microorganisms. Journal of Nanobiotechnology, 2017, 15, 19.	9.1	13
61	Influence of chemical speciation and biofilm composition on mercury accumulation by freshwater biofilms. Environmental Sciences: Processes and Impacts, 2017, 19, 38-49.	3.5	16
62	Alternating Current-Dielectrophoresis Collection and Chaining of Phytoplankton on Chip: Comparison of Individual Species and Artificial Communities. Biosensors, 2017, 7, 4.	4.7	11
63	Kinetics of mercury accumulation by freshwater biofilms. Environmental Chemistry, 2017, 14, 458.	1.5	7
64	Hospital Effluents Are One of Several Sources of Metal, Antibiotic Resistance Genes, and Bacterial Markers Disseminated in Sub-Saharan Urban Rivers. Frontiers in Microbiology, 2016, 7, 1128.	3.5	99
65	Pro-oxidant effects of nano-TiO ₂ on Chlamydomonas reinhardtii during short-term exposure. RSC Advances, 2016, 6, 115271-115283.	3.6	8
66	Silver nanoparticle behaviour in lake water depends on their surface coating. Science of the Total Environment, 2016, 573, 946-953.	8.0	49
67	A Multimethod Approach for Investigating Algal Toxicity of Platinum Nanoparticles. Environmental Science & Technology, 2016, 50, 10635-10643.	10.0	65
68	Role of cellular compartmentalization in the trophic transfer of mercury species in a freshwater plant-crustacean food chain. Journal of Hazardous Materials, 2016, 320, 401-407.	12.4	13
69	Elodea nuttallii exposure to mercury exposure under enhanced ultraviolet radiation: Effects on bioaccumulation, transcriptome, pigment content and oxidative stress. Aquatic Toxicology, 2016, 180, 218-226.	4.0	15
70	Environmental quality assessment of reservoirs impacted by Hg from chlor-alkali technologies: case study of a recovery. Environmental Science and Pollution Research, 2016, 23, 22542-22553.	5.3	13
71	Stress and Protists: No life without stress. European Journal of Protistology, 2016, 55, 39-49.	1.5	28
72	Transcriptomic and Physiological Responses of the Green Microalga <i>Chlamydomonas reinhardtii</i> during Short-Term Exposure to Subnanomolar Methylmercury Concentrations. Environmental Science & Technology, 2016, 50, 7126-7134.	10.0	36

#	Article	IF	CITATIONS
73	Persistent Hg contamination and occurrence of Hg-methylating transcript (hgcA) downstream of a chlor-alkali plant in the Olt River (Romania). Environmental Science and Pollution Research, 2016, 23, 10529-10541.	5.3	69
74	Interactive effects of copper oxide nanoparticles and light to green alga Chlamydomonas reinhardtii. Aquatic Toxicology, 2016, 170, 120-128.	4.0	74
75	New insights into ROS dynamics: a multi-layered microfluidic chip for ecotoxicological studies on aquatic microorganisms. Nanotoxicology, 2016, 10, 1041-1050.	3.0	14
76	Two-Dimensional Algal Collection and Assembly by Combining AC-Dielectrophoresis with Fluorescence Detection for Contaminant-Induced Oxidative Stress Sensing. Biosensors, 2015, 5, 319-336.	4.7	19
77	Effects of copper-oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioaccumulation, photosynthesis and oxidative stress in the aquatic macrophyte Elodea nuttallii. Chemosphere, 2015, 128, 56-61.	8.2	76
78	Portable oxidative stress sensor: Dynamic and non-invasive measurements of extracellular H 2 O 2 released by algae. Biosensors and Bioelectronics, 2015, 68, 245-252.	10.1	15
79	Photo-transformation of pedogenic humic acid and consequences for Cd(II), Cu(II) and Pb(II) speciation and bioavailability to green microalga. Chemosphere, 2015, 138, 908-915.	8.2	17
80	Stability of Titanium Dioxide Nanoparticle Agglomerates in Transitional Waters and Their Effects Towards Plankton from Lagoon of Venice (Italy). Aquatic Geochemistry, 2015, 21, 343-362.	1.3	4
81	The role of bacterial and algal exopolymeric substances in iron chemistry. Marine Chemistry, 2015, 173, 148-161.	2.3	44
82	Lead Bioavailability to Freshwater Microalgae in the Presence of Dissolved Organic Matter: Contrasting Effect of Model Humic Substances and Marsh Water Fractions Obtained by Ultrafiltration. Aquatic Geochemistry, 2015, 21, 217-230.	1.3	10
83	Dynamics of sub-lethal effects of nano-CuO on the microalga Chlamydomonas reinhardtii during short-term exposure. Aquatic Toxicology, 2015, 161, 267-275.	4.0	40
84	Effects of a reservoir flushing on trace metal partitioning, speciation and benthic invertebrates in the floodplain. Environmental Sciences: Processes and Impacts, 2014, 16, 2692-2702.	3.5	15
85	Effects of macrophytes on the fate of mercury in aquatic systems. Environmental Toxicology and Chemistry, 2014, 33, 1225-1237.	4.3	47
86	Uptake, localization and clearance of quantum dots in ciliated protozoa Tetrahymena thermophila. Environmental Pollution, 2014, 190, 58-64.	7.5	31
87	Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells <i>in vitro</i> : A comparative review. Nanotoxicology, 2014, 8, 57-71.	3.0	297
88	Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae – state of the art and knowledge gaps. Nanotoxicology, 2014, 8, 605-630.	3.0	263
89	Bioavailability of inorganic nanoparticles to planktonic bacteria and aquatic microalgae in freshwater. Environmental Science: Nano, 2014, 1, 214.	4.3	75
90	Potential of Hyperspectral Imaging Microscopy for Semi-quantitative Analysis of Nanoparticle Uptake by Protozoa. Environmental Science & Technology, 2014, 48, 8760-8767.	10.0	84

#	Article	IF	CITATIONS
91	Antagonistic and synergistic effects of light irradiation on the effects of copper on Chlamydomonas reinhardtii. Aquatic Toxicology, 2014, 155, 275-282.	4.0	33
92	Degradation of eight relevant micropollutants in different water matrices by neutral photo-Fenton process under UV254 and simulated solar light irradiation – A comparative study. Applied Catalysis B: Environmental, 2014, 158-159, 30-37.	20.2	63
93	Interactions between mercury and phytoplankton: Speciation, bioavailability, and internal handling. Environmental Toxicology and Chemistry, 2014, 33, 1211-1224.	4.3	108
94	Species-specific isotope tracers to study the accumulation and biotransformation of mixtures of inorganic and methyl mercury by the microalga Chlamydomonas reinhardtii. Environmental Pollution, 2014, 192, 212-215.	7.5	25
95	Towards Mechanistic Understanding of Mercury Availability and Toxicity to Aquatic Primary Producers. Chimia, 2014, 68, 799.	0.6	20
96	Interactions of core–shell quantum dots with metal resistant bacterium Cupriavidus metallidurans: Consequences for Cu and Pb removal. Journal of Hazardous Materials, 2013, 261, 123-129.	12.4	12
97	Optimization of the C11â€BODIPY ^{581/591} dye for the determination of lipid oxidation in <i>Chlamydomonas reinhardtii</i> by flow cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2013, 83, 952-961.	1.5	31
98	Biosensor based on chemically-designed anchorable cytochrome c for the detection of H2O2 released by aquaticcells. Biosensors and Bioelectronics, 2013, 42, 385-390.	10.1	44
99	Alternating current-dielectrophoresis driven on-chip collection and chaining of green microalgae in freshwaters. Biomicrofluidics, 2013, 7, 24109.	2.4	26
100	A portable microfluidic-based biophotonic sensor for extracellular H2O2measurements. , 2013, , .		3
101	Sensing the dynamics of oxidative stress using enhanced absorption in protein-loaded random media. Scientific Reports, 2013, 3, 3447.	3.3	24
102	Determination of trace metals accumulated and internalized by marine phytoplankton; interferences with colloidal organic matter. International Journal of Environmental Analytical Chemistry, 2012, 92, 1699-1714.	3.3	3
103	Cd and Pb removal from contaminated environment by metal resistant bacterium Cupriavidus metallidurans CH34: importance of the complexation and competition effects. Environmental Chemistry, 2012, 9, 389.	1.5	12
104	The use of permeation liquid membranes for free zinc measurements in aqueous solution. Environmental Chemistry, 2012, 9, 429.	1.5	12
105	Cell-wall-dependent effect of carboxyl-CdSe/ZnS quantum dots on lead and copper availability to green microalgae. Environmental Pollution, 2012, 167, 27-33.	7.5	62
106	Effects of extraction methods on the composition and molar mass distributions of exopolymeric substances of the bacterium Sinorhizobium meliloti. Bioresource Technology, 2012, 114, 603-609.	9.6	32
107	Effect of Humic Substance Photoalteration on Lead Bioavailability to Freshwater Microalgae. Environmental Science & Technology, 2011, 45, 3452-3458.	10.0	9
108	Exopolysaccharides produced by bacteria isolated from the pelagic Southern Ocean — Role in Fe binding, chemical reactivity, and bioavailability. Marine Chemistry, 2011, 123, 88-98.	2.3	100

#	Article	IF	CITATIONS
109	Composition and molar mass characterisation of bacterial extracellular polymeric substances by using chemical, spectroscopic and fractionation techniques. Environmental Chemistry, 2011, 8, 155.	1.5	11
110	Solid phase extraction and diffusive gradients in thin films techniques for determination of total and labile concentrations of Cd(II), Cu(II), Ni(II) and Pb(II) in Black Sea water. International Journal of Environmental Analytical Chemistry, 2011, 91, 62-73.	3.3	14
111	Assessment of metal - extracellular polymeric substances interactions by asymmetrical flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry. Environmental Chemistry, 2010, 7, 215.	1.5	19
112	Cu and Pb accumulation by the marine diatom Thalassiosira weissflogii in the presence of humic acids. Environmental Chemistry, 2010, 7, 309.	1.5	23
113	Uptake of Cd(II) and Pb(II) by microalgae in presence of colloidal organic matter from wastewater treatment plant effluents. Environmental Pollution, 2010, 158, 369-374.	7.5	23
114	Role of extracellular compounds in Cd-sequestration relative to Cd uptake by bacterium Sinorhizobium meliloti. Environmental Pollution, 2010, 158, 2561-2565.	7.5	28
115	Modeling of Cd Uptake and Efflux Kinetics in Metal-Resistant Bacterium <i>Cupriavidus metallidurans</i> . Environmental Science & amp; Technology, 2010, 44, 4597-4602.	10.0	31
116	Characterization of the colloidal organic matter from theÂAmazonian basin by asymmetrical flow field-flow fractionation and size exclusion chromatography. Water Research, 2010, 44, 223-231.	11.3	30
117	Colloidal organic matter from wastewater treatment plant effluents: Characterization and role in metal distribution. Water Research, 2010, 44, 340-350.	11.3	71
118	Dynamic NanoSIMS ion imaging of unicellular freshwater algae exposed to copper. Analytical and Bioanalytical Chemistry, 2009, 393, 583-589.	3.7	51
119	EFFECT OF COMPETING IONS AND COMPLEXING ORGANIC SUBSTANCES ON THE CADMIUM UPTAKE BY THE SOIL BACTERIUM SINORHIZOBIUM MELILOTI. Environmental Toxicology and Chemistry, 2009, 28, 741.	4.3	13
120	Trace Metal Speciation and Bioavailability in Surface Waters of the Black Sea Coastal Area Evaluated by HF-PLM and DGT. Environmental Science & Technology, 2009, 43, 1798-1803.	10.0	49
121	Amine- and Carboxyl- Quantum Dots Affect Membrane Integrity of Bacterium <i>Cupriavidus metallidurans</i> CH34. Environmental Science & Technology, 2009, 43, 5117-5122.	10.0	37
122	Effect of natural organic matter and green microalga on carboxyl-polyethylene glycol coated CdSe/ZnS quantum dots stability and transformations under freshwater conditions. Environmental Pollution, 2009, 157, 3445-3450.	7.5	42
123	Effect of Humic Acid on Cd(II), Cu(II), and Pb(II) Uptake by Freshwater Algae: Kinetic and Cell Wall Speciation Considerations. Environmental Science & Technology, 2009, 43, 730-735.	10.0	61
124	The Chance of a Lifetime: To Learn from the Best. Chimia, 2009, 63, 860.	0.6	0
125	The biouptake and toxicity of arsenic species on the green microalga Chlorella salina in seawater. Aquatic Toxicology, 2008, 87, 264-271.	4.0	129
126	Adaptation of Aerobically Growing <i>Pseudomonas aeruginosa</i> to Copper Starvation. Journal of Bacteriology, 2008, 190, 6706-6717.	2.2	49

#	Article	lF	CITATIONS
127	Pb uptake by the freshwater alga Chlorella kesslerii in the presence of dissolved organic matter of variable composition. Environmental Chemistry, 2008, 5, 366.	1.5	16
128	Terrestrial ecotoxicity and effect factors of metals in life cycle assessment (LCA). Chemosphere, 2007, 68, 1489-1496.	8.2	41
129	Predicting Pb bioavailability to freshwater microalgae in the presence of fulvic acid: Algal cell density as a variable. Chemosphere, 2007, 69, 1438-1445.	8.2	19
130	Comparison of Cd(II), Cu(II), and Pb(II) Biouptake by Green Algae in the Presence of Humic Acid. Environmental Science & Technology, 2007, 41, 4172-4178.	10.0	71
131	Asymmetrical flow fieldâ€flow fractionation coupled to multiangle laser light scattering detector: Optimization of crossflow rate, carrier characteristics, and injected mass in alginate separation. Journal of Separation Science, 2007, 30, 2332-2340.	2.5	22
132	Electrohydrodynamic Properties of Succinoglycan as Probed by Fluorescence Correlation Spectroscopy, Potentiometric Titration and Capillary Electrophoresis. Biomacromolecules, 2006, 7, 2818-2826.	5.4	33
133	Characterization of H+ and Cd2+ binding properties of the bacterial exopolysaccharides. Chemosphere, 2006, 65, 1362-1370.	8.2	64
134	Asymmetrical Flow Field Flow Fractionation - Multidetection System as a Tool for Studying Metal - Alginate Interactions. Environmental Chemistry, 2006, 3, 192.	1.5	24
135	Do Exudates Affect Cadmium Speciation and Bioavailability to the Rhizobacterium Sinorhizobium meliloti?. Environmental Chemistry, 2006, 3, 424.	1.5	8
136	Predicting the Bioavailability of Metals and Metal Complexes: Critical Review of the Biotic Ligand Model. Environmental Chemistry, 2005, 2, 9.	1.5	289
137	Quantifying Pb and Cd Complexation by Alginates and the Role of Metal Binding on Macromolecular Aggregation. Biomacromolecules, 2005, 6, 2756-2764.	5.4	60
138	Influence of the Composition of Natural Organic Matter on Pb Bioavailability to Microalgae. Environmental Science & Technology, 2005, 39, 6109-6116.	10.0	78
139	Discriminating between intra―and extracellular metals using chemical extractions. Limnology and Oceanography: Methods, 2004, 2, 237-247.	2.0	155
140	Permeation liquid membrane as a tool for monitoring bioavailable Pb in natural waters. Science of the Total Environment, 2004, 328, 55-68.	8.0	66
141	SOME FUNDAMENTAL (AND OFTEN OVERLOOKED) CONSIDERATIONS UNDERLYING THE FREE ION ACTIVITY AND BIOTIC LIGAND MODELS. Environmental Toxicology and Chemistry, 2004, 23, 283.	4.3	100
142	Effect of pH on Pb biouptake by the freshwater alga Chlorella kesslerii. Environmental Chemistry Letters, 2003, 1, 185-189.	16.2	34
143	Role of Fulvic Acid on Lead Bioaccumulation byChlorella kesslerii. Environmental Science & Technology, 2003, 37, 1114-1121.	10.0	106
144	Physicochemical Mechanisms of Trace Metal Bioaccumulation by Microorganisms. Chimia, 2002, 56, 681-684.	0.6	7

#	Article	IF	CITATIONS
145	Physicochemical Aspects of Lead Bioaccumulation byChlorella vulgaris. Environmental Science & Technology, 2002, 36, 969-975.	10.0	135
146	Surface investigation on chemically modified platforms for electrothermal atomic absorption spectrometry. Surface and Interface Analysis, 2000, 29, 747-753.	1.8	19
147	Permanent modification in electrothermal atomic absorption spectrometry — advances, anticipations and reality. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2000, 55, 473-490.	2.9	94
148	Permanent iridium modifier deposited on tungsten and zirconium-treated platforms in electrothermal atomic absorption spectrometry: vaporization of bismuth, silver and tellurium. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1999, 54, 455-467.	2.9	26
149	Chemical modification in electrothermal atomic absorption spectrometry. Advances in Atomic Spectroscopy, 1998, , 27-150.	0.8	19
150	Palladium Release in Electrothermal Atomic Absorption Spectrometry. Spectroscopy Letters, 1997, 30, 297-307.	1.0	11
151	Electrothermal Atomic Absorption Spectrometric Determination of Lead and Tin in Slurries. Optimization Study. Analyst, The, 1997, 122, 337-343.	3.5	21
152	The Onium Compounds. Journal of Chemical Education, 1997, 74, 734.	2.3	6
153	Preatomization behavior of palladium in electrothermal atomic-absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1997, 52, 1259-1267.	2.9	7
154	Morphological and spectroscopic investigation of the behavior of permanent iridium modifier deposited on pyrolytic graphite coated and zirconium treated platforms in electrothermal atomic absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1997, 52, 2115-2126.	2.9	21
155	Release of selenium and tin from the graphite support in the presence of tungsten and palladium modifiers. Reaction Kinetics and Catalysis Letters, 1997, 61, 139-145.	0.6	3
156	Behaviour of various arsenic species in electrothermal atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 1996, 11, 997.	3.0	32
157	Electrothermal Atomic Absorption Spectrometric Determination of Volatile Elements in Biological Materials in the Presence of a Mixed Palladium-Tungsten Chemical Modifier. Analytical Letters, 1996, 29, 73-88.	1.8	17
158	Application of the Kelvin equation to vaporization of silver and gold in electrothermal atomic absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1995, 50, 1725-1732.	2.9	19
159	Chemical modification in electrothermal atomic absorption spectrometry. Organization and classification of data by multivariate methods. Invited lecture. Journal of Analytical Atomic Spectrometry, 1992, 7, 147.	3.0	47
160	Simplified kinetic model describing the analyte losses during pre-atomization thermal treatment in electrothermal atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 1992, 7, 365.	3.0	11
161	Comparative Study of Ruthenium, Rhodium and Palladium as Chemical Modifiers in Graphite Furnace Atomic Absorption Spectrometry. Spectroscopy Letters, 1992, 25, 221-238.	1.0	46
162	Kinetic Approach to the Interpretation of Analyte Losses During the Preatomization Thermal Treatment in Electrothermal Atomization Atomic Absorption Spectrometry. Spectroscopy Letters, 1991, 24, 139-159.	1.0	12

2

#	ARTICLE	IF	CITATIONS
163	Study of Some Tungsten-Containing Chemical Modifiers in Graphite-Furnace Atomic Absorption Spectrometry. Analytical Letters, 1990, 23, 1921-1937.	1.8	41

164 Photo-Oxidative Stress in Green Algae and Cyanobacteria. , 0, , .