
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6395289/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Use of Faecal Transplantation with a Novel Diet for Mild to Moderate Active Ulcerative Colitis: The CRAFT UC Randomised Controlled Trial. Journal of Crohn's and Colitis, 2022, 16, 369-378.	1.3	48
2	Validation of Two Commercial Multiplex Real-Time PCR Assays for Detection of SARS-CoV-2 in Stool Donors for Fecal Microbiota Transplantation. Microorganisms, 2022, 10, 284.	3.6	3
3	Fecal microbiota transplantation to improve efficacy of immune checkpoint inhibitors in renal cell carcinoma (TACITO trial) Journal of Clinical Oncology, 2022, 40, TPS407-TPS407.	1.6	3
4	Fecal Microbiota Transplantation: What's New?. Microorganisms, 2022, 10, 23.	3.6	4
5	How the gut parasitome affects human health. Therapeutic Advances in Gastroenterology, 2022, 15, 175628482210915.	3.2	19
6	Rummeliibacillus suwonensis: First Time Isolation from Human Feces by Culturomics. Current Microbiology, 2022, 79, .	2.2	0
7	Fecal microbiota transplantation for the treatment of steroid-refractory, intestinal, graft-versus-host disease in a pediatric patient. Bone Marrow Transplantation, 2022, 57, 1600-1603.	2.4	3
8	Nonlinear machine learning pattern recognition and bacteria-metabolite multilayer network analysis of perturbed gastric microbiome. Nature Communications, 2021, 12, 1926.	12.8	22
9	SARS-CoV-2 vaccines and donor recruitment for FMT. The Lancet Gastroenterology and Hepatology, 2021, 6, 264-266.	8.1	5
10	Donor program for fecal microbiota transplantation: A 3-year experience of a large-volume Italian stool bank. Digestive and Liver Disease, 2021, 53, 1428-1432.	0.9	10
11	Culturomic and quantitative realâ€time ―polymerase chain reaction analyses for early contamination of abutments with different surfaces: A randomized clinical trial. Clinical Implant Dentistry and Related Research, 2021, 23, 568-578.	3.7	4
12	Fecal microbiota transplantation for recurrent C. difficile infection in patients with inflammatory bowel disease: experience of a large-volume European FMT center. Gut Microbes, 2021, 13, 1994834.	9.8	21
13	Laboratory handling practice for faecal microbiota transplantation. Journal of Applied Microbiology, 2020, 128, 893-898.	3.1	7
14	Maintaining standard volumes, efficacy and safety, of fecal microbiota transplantation for C. difficile infection during the COVID-19 pandemic: A prospective cohort study. Digestive and Liver Disease, 2020, 52, 1390-1395.	0.9	16
15	Increased <i>Faecalibacterium</i> abundance is associated with clinical improvement in patients receiving rifaximin treatment. Beneficial Microbes, 2020, 11, 519-525.	2.4	13
16	Faecal microbiota transplantation for the treatment of diarrhoea induced by tyrosine-kinase inhibitors in patients with metastatic renal cell carcinoma. Nature Communications, 2020, 11, 4333.	12.8	82
17	Characterizing Peri-Implant and Sub-Cingival Microbiota through Culturomics. First Isolation of Some Species in the Oral Cavity. A Pilot Study. Pathogens, 2020, 9, 365.	2.8	14
18	Esophageal microbiome signature in patients with Barrett's esophagus and esophageal adenocarcinoma. PLoS ONE, 2020, 15, e0231789.	2.5	58

#	Article	IF	CITATIONS
19	Screening of faecal microbiota transplant donors during the COVID-19 outbreak: suggestions for urgent updates from an international expert panel. The Lancet Gastroenterology and Hepatology, 2020, 5, 430-432.	8.1	108
20	Reorganisation of faecal microbiota transplant services during the COVID-19 pandemic. Gut, 2020, 69, 1555-1563.	12.1	110
21	The Effect of Different Antibiotic Regimens on Bacterial Resistance: A Systematic Review. Antibiotics, 2020, 9, 22.	3.7	39
22	FETR-ALS Study Protocol: A Randomized Clinical Trial of Fecal Microbiota Transplantation in Amyotrophic Lateral Sclerosis. Frontiers in Neurology, 2019, 10, 1021.	2.4	48
23	A Literature Review of Metagenomics and Culturomics of the Peri-implant Microbiome: Current Evidence and Future Perspectives. Materials, 2019, 12, 3010.	2.9	58
24	Impact evaluation of a Critical Pathway for patients with Clostridium difficile infection: A pre-post analysis in a Third Level Referral Center. International Journal of Infectious Diseases, 2019, 80, 105-110.	3.3	3
25	Incidence of Bloodstream Infections, Length of Hospital Stay, and Survival in Patients With Recurrent <i>Clostridioides difficile</i> Infection Treated With Fecal Microbiota Transplantation or Antibiotics. Annals of Internal Medicine, 2019, 171, 695.	3.9	81
26	Fecal Microbiota Transplantation: A Potential Tool for Treatment of Human Female Reproductive Tract Diseases. Frontiers in Immunology, 2019, 10, 2653.	4.8	71
27	Intestinal Parasitic Infections in Internationally Adopted Children. Pediatric Infectious Disease Journal, 2019, 38, 983-989.	2.0	10
28	International consensus conference on stool banking for faecal microbiota transplantation in clinical practice. Gut, 2019, 68, 2111-2121.	12.1	290
29	Clostridium difficile: trend in an Italian Tertiary Care Hospital during fifteen years, 2002-2016. Minerva Medica, 2019, 110, 168-171.	0.9	3
30	Anti-tumor necrosis factor α therapy associates to type 17 helper T lymphocytes immunological shift and significant microbial changes in dextran sodium sulphate colitis. World Journal of Gastroenterology, 2019, 25, 1465-1477.	3.3	11
31	Pyroelectric Effect Enables Simple and Rapid Evaluation of Biofilm Formation. ACS Applied Materials & Interfaces, 2018, 10, 15467-15476.	8.0	11
32	Actoxumab + bezlotoxumab combination: what promise for <i>Clostridium difficile</i> treatment?. Expert Opinion on Biological Therapy, 2018, 18, 469-476.	3.1	5
33	Gut Microbiota in Health, Diverticular Disease, Irritable Bowel Syndrome, and Inflammatory Bowel Diseases: Time for Microbial Marker of Gastrointestinal Disorders. Digestive Diseases, 2018, 36, 56-65.	1.9	146
34	Liver Injury, Endotoxemia, and Their Relationship to Intestinal Microbiota Composition in Alcoholâ€Preferring Rats. Alcoholism: Clinical and Experimental Research, 2018, 42, 2313-2325.	2.4	29
35	Randomised clinical trial: faecal microbiota transplantation by colonoscopy plus vancomycin for the treatment of severe refractory <i>Clostridium difficile</i> infection—single versus multiple infusions. Alimentary Pharmacology and Therapeutics, 2018, 48, 152-159.	3.7	117
36	European consensus conference on faecal microbiota transplantation in clinical practice. Gut, 2017, 66, 569-580.	12.1	793

#	Article	IF	CITATIONS
37	Predictors of failure after single faecal microbiota transplantation in patients with recurrent Clostridium difficile infection: results from a 3-year, single-centre cohort study. Clinical Microbiology and Infection, 2017, 23, 337.e1-337.e3.	6.0	60
38	Culturomics: bacterial species isolated in 3 healthy donors for faecal microbiota transplantation in Clostridium difficile infection. Microbiologia Medica, 2017, 32, .	0.1	4
39	The Role of Antibiotics in Gut Microbiota Modulation: The Eubiotic Effects of Rifaximin. Digestive Diseases, 2016, 34, 269-278.	1.9	105
40	Principles of DNA-Based Gut Microbiota Assessment and Therapeutic Efficacy of Fecal Microbiota Transplantation in Gastrointestinal Diseases. Digestive Diseases, 2016, 34, 279-285.	1.9	22
41	Efficacy and Mechanisms of Action of Fecal Microbiota Transplantation in Ulcerative Colitis: Pitfalls and Promises From a First Meta-Analysis. Transplantation Proceedings, 2016, 48, 402-407.	0.6	26
42	Effects of Proton Pump Inhibitors on the Gastric Mucosa-Associated Microbiota in Dyspeptic Patients. Applied and Environmental Microbiology, 2016, 82, 6633-6644.	3.1	85
43	<i>In vitro</i> effect of clarithromycin and alginate lyase against <i>helicobacter pylori</i> biofilm. Biotechnology Progress, 2016, 32, 1584-1591.	2.6	25
44	Randomised clinical trial: faecal microbiota transplantation by colonoscopy vs. vancomycin for the treatment of recurrent <i>Clostridium difficile</i> infection. Alimentary Pharmacology and Therapeutics, 2015, 41, 835-843.	3.7	467
45	Risk factors and clinical outcomes of candidaemia in patients treated for Clostridium difficile infection. Clinical Microbiology and Infection, 2015, 21, 493.e1-493.e4.	6.0	29
46	Gut Microbiome Changes after Stem Cell Transplantation. Blood, 2015, 126, 1953-1953.	1.4	9
47	<i>Entamoeba dispar</i> : A Rare Case of Enteritis in a Patient Living in a Nonendemic Area. Case Reports in Gastrointestinal Medicine, 2014, 2014, 1-3.	0.3	6
48	Faecal transplantation for Clostridium difficile infection. Three cases treated in Italy. Digestive and Liver Disease, 2014, 46, 475.	0.9	6
49	Culture-guided treatment approach for <i>Helicobacter pylori</i> infection: Review of the literature. World Journal of Gastroenterology, 2014, 20, 5205.	3.3	38
50	Intestinal parasites isolated in a large teaching hospital, Italy, 1 May 2006 to 31 December 2008. Eurosurveillance, 2011, 16, .	7.0	49
51	A Patient with Acute Myeloid Leukemia and a Solid Mass in the Colon. Clinical Infectious Diseases, 2009, 49, 1897-1898.	5.8	1
52	Monoclonal antibody fragment from combinatorial phage display library neutralizes alpha-latrotoxin activity and abolishes black widow spider venom lethality, in mice. Toxicon, 2008, 51, 547-554.	1.6	21
53	First Italian case of cyclosporiasis in an immunocompetent woman: local acquired infection. New Microbiologica, 2008, 31, 281-4.	0.1	10
54	In vitro activity of bergamot natural essence and furocoumarin-free and distilled extracts, and their associations with boric acid, against clinical yeast isolates. Journal of Antimicrobial Chemotherapy, 2005, 55, 110-114.	3.0	40

#	Article	IF	CITATIONS
55	Multicenter Comparative Evaluation of Six Commercial Systems and the National Committee for Clinical Laboratory Standards M27-A Broth Microdilution Method for Fluconazole Susceptibility Testing of Candida Species. Journal of Clinical Microbiology, 2002, 40, 2953-2958.	3.9	58
56	Commercial systems for fluconazole susceptibility testing of yeasts: comparison with the broth microdilution method. Diagnostic Microbiology and Infectious Disease, 2000, 38, 29-36.	1.8	20
57	Polymerase chain reaction-reverse cross-blot hybridization assay in the diagnosis of sporotrichoid Mycobacterium marinum infection. British Journal of Dermatology, 1998, 139, 872-876.	1.5	35